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Université de Liège
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Abstract

Static wind loads are used for the design of large civil structures such as high-rise build-
ings, large roofs and long-span bridges. Once static wind loads are known, they are used
through the iterative design process without repeating cumbersome dynamical analyses. In
this framework, structural engineers can effectively focus on the structural sizing since static
analyses are straightforward. No codified wind loads, however, exist for those large structures
with unique shapes and there is no consensual view on how to formally derived them. For
each new major project, the challenge consists therefore in deriving a relevant set of static
wind loads. Obviously, these loads must provide the actual envelope values of structural
responses of interest. This states the objective of the envelope reconstruction problem and
constitutes the core of this thesis. The proposed developments to solve this problem are
relevant for structures responding with a linear dynamic behavior to the buffeting action of
synoptic winds in a stationary framework.

The pioneering concept of Equivalent Static Wind Load is normally considered for the
design. An extensive review points out three main limitations of the current formulations.
They have been originally established in a Gaussian context, are associated with either a
nodal or nodal-modal basis and do not have a formal definition. The proposed Conditional
Expected Load method overcomes these three drawbacks by defining a Conditional Expected
Static Wind Load. This novel approach presents a general rigorous formulation for linear
structural behavior, irrespective of the basis used for the analysis and relevant in a non-
Gaussian context. The method is particularized for a certain class of non-Gaussian processes
through a bicubic translation model. This model covers a large range of non-Gaussianity in
the random processes and therefore paves the way for the formal establishment of “non-
Gaussian” static wind loads.

Other kinds of static loads such as the covariance proper transformation loading modes
and the modal inertial loads are additionally studied. Unfortunately, both sets of loads are
simply relevant for two limit structural behaviors, quasi-static and resonant, respectively.
Moreover, they do not adapt to the set of structural responses of interest. From both points
of view, one key result from our study is the innovative concept of Principal Static Wind Load
as a sound solution for the envelope reconstruction problem. The concept relies upon a robust
mathematical foundation. These loads are determined by the singular value decomposition
of a large set of equivalent static wind loads. This decomposition can be seen as a way to
rank the most relevant load patterns for the envelope reconstruction problem. The principal
static wind loads have also the added distinctive advantage to be flexible. They are, indeed,
able to naturally adapt to the set of structural responses of interest.

Finally, a complete methodology to solve the envelope reconstruction problem irrespec-
tive of the structure, its load-bearing system and its susceptibility to vibrations in a Gaussian
or non-Gaussian context is rigorously conceptualized. The intrinsic controllability of a set
of pertinent parameters provides a smart balance between over and underestimation of the
actual envelope. Moreover, combinations of static wind loads are computed to speed-up the
reconstruction of the envelope values. The problem of determining these combination coeffi-
cients is formulated as a constrained nonlinear optimization. Equivalent and principal static
wind loads, covariance proper transformation loading modes and modal inertial loads are
implemented within the proposed methodology. Three examples, a four-span bridge, a real-
life large stadium roof and a low-rise building demonstrate that the envelope reconstruction
accuracy is considerably improved with principal static wind loads and with combinations
thereof.
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Résumé

Des chargements de vent statiques sont utilisés couramment pour le dimensionnement
d’ouvrages imposants du génie civil tel que gratte-ciels, toitures de grandes dimensions et
ponts de grande portée. Lorsque ces chargements de vent statiques sont connus, ils sont
utilisés de manière itérative durant le dimensionnement sans devoir réaliser une analyse dy-
namique formelle à chaque modification d’élément au sein de la structure. Etant donné la
simplicité d’une analyse statique linéaire, les ingénieurs de structures peuvent se focaliser
efficacement sur le dimensionnement et non sur des analyses structurelles. Cependant, pour
des ouvrages de dimensions hors normes aux formes souvent uniques et pouvant répondre de
manière dynamique, il n’existe pas de chargements de vent codifiés ni même d’une méthodolo-
gie claire afin de les dériver. Pour chaque nouveau projet d’envergure, le défi consiste alors à
établir un ensemble de chargements de vent statiques pertinents pour le dimensionnement.
A l’évidence, ces chargements doivent reproduire les valeurs enveloppes réelles des réponses
structurelles, c.-à-d. celles provenant d’une analyse dynamique, et ce de manière sécuritaire.
Cela établit l’objectif du problème de reconstruction de l’enveloppe et constitue le noyau
central des recherches entreprises au sein de cette thèse. Les développements proposés afin
d’apporter des solutions à ce problème sont applicables aux structures ayant un comporte-
ment linéaire dynamique à l’action de vents turbulents synoptiques en faisant l’hypothèse de
processus aléatoires stationnaires.

Le concept de chargement de vent statique équivalent est souvent considéré pour le dimen-
sionnement. Un état de l’art exhaustif indique cependant trois limitations des formulations
actuelles. Celles-ci ont été originellement établies dans un contexte Gaussien, sont asso-
ciées à une base nodale ou nodale-modale et n’ont pas de définition formelle. La méthode
de charge moyenne conditionnelle est développée afin de surmonter ces trois limitations en
définissant un chargement de vent moyen statique conditionnel. Cette nouvelle approche
est basée sur une formulation générale et rigoureuse, pour des structures à comportements
linéaires, quelle que soit la base dans laquelle l’analyse est effectuée et applicable dans un
contexte non-Gaussien. La méthode est explicitée pour une certaine classe de processus
non-Gaussiens au moyen d’un modèle de translation bicubique. Ce modèle couvre une large
gamme de processus aléatoires et ouvre donc la voie à l’établissement formel de chargements
de vent statiques équivalents dits “non-Gaussiens”.

D’autres types de chargements statiques sont également étudiées tels que, les modes de
chargement provenant de la diagonalisation de la matrice de covariance des pressions aérody-
namiques et les charges modales inertielles. Cependant, ces deux ensembles de chargements
sont valables uniquement pour deux comportements structurels limites, soit quasi-statique,
soit résonant, respectivement. De plus, ils ne s’adaptent pas à l’ensemble des réponses
étudiées. A partir de ces deux constats, un résultat clé de notre étude est le concept inno-
vant de chargement de vent statique principal apportant une solution robuste au problème de
reconstruction d’enveloppe. Le concept se base sur des fondements mathématiques rigoureux.
Ces chargements sont déterminés par une décomposition en valeurs singulières d’un grand
nombre de chargements de vent statiques équivalents. Cette décomposition peut être inter-
prétée comme une manière de classer les chargements les plus importants pour le problème de
reconstruction de l’enveloppe. Les chargements de vent statiques principaux ont également
l’avantage caractéristique d’être adaptatifs. En effet, ils peuvent naturellement s’adapter à
l’ensemble des réponses structurelles considérées.
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Finalement, une méthodologie complète pour solutionner le problème de reconstruction
d’enveloppe, quelque soit la structure, son système porteur et sa susceptibilité aux vibrations
dans un contexte Gaussien ou non-Gaussien est rigoureusement conceptualisée. Un ensemble
de paramètres pertinents permet un contrôle intrinsèque du niveau de sur- et sous-estimation
de l’enveloppe. De plus, des combinaisons de chargements de vent statiques sont calculées
afin de faciliter la reconstruction des valeurs enveloppes. La détermination des coefficients de
combinaison est formulée via un problème d’optimisation non linéaire avec contraintes. Les
chargements de vents statiques équivalents et principaux, les modes de chargement provenant
de la diagonalisation de la matrice de covariance et les charges modales inertielles sont utilisés
au sein de la méthodologie proposée. Trois exemples: un pont à quatre travées, une toiture
de stade réel ainsi qu’un bâtiment de type industriel de faible hauteur démontrent que la
reconstruction de l’enveloppe est considérablement améliorée avec les chargements de vent
statiques principaux ainsi qu’avec des combinaisons de ceux-ci.
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dans des conférences internationales. Ces voyages et présentations m’ont beaucoup apporté.
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ELECTRIC LIGHT ORCHESTRA (ELO)

”Hold On Tight”

Hold on tight to your dream,

Hold on tight to your dream,

When you see your ship go sailing,

When you feel your heart is breaking,

Hold on tight to your dream.

It’s a long time to be gone,

Time just rolls on and on,

When you need a shoulder to cry on,

When you get so sick of trying,

Just hold on tight to your dream.

When you get so down that you can’t get up,

And you want so much but you’re all out of luck,

When you’re so downhearted and misunderstood,

Just over & over & over you could.

Accroche-toi à ton rêve,

Accroche-toi à ton rêve,

Quand tu vois ton bateau partir,

Quand tu sents ton coeur se briser,

Accroche-toi à ton rêve.

Hold on tight to your dream,

Hold on tight to your dream,

When you see the shadows falling,

When you hear that cold wind calling,

Hold on tight to your dream.

Lyrics: Jeff Lynne

Copyright: 1981 JET Records
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I.1 Context

The structural design of buildings is the main mission of structural engineers. They have
responsibility for the feasibility with the available materials and techniques, serviceability
in regard to the purposes of the building and strength of the structure under various loads.
These loads may be regarded as static or time-dependent. The former load may be evaluated
with ease while the latter type is more demanding. The primary static load is the self-weight
of the structural elements for which the structural response is computed easily whereas
dealing with time-dependent loads required advanced techniques of structural analyses.

In our context, we are interested in random loads, in space and time, produced by the
wind blowing over civil engineering structures. Wind loads may be decisive for a wide
range of constructions and must therefore be predicted adequately in a structural design.
Specifically, there exist synoptic and non-synoptic winds associated with severe to extreme
wind events. The loading due to synoptic winds, also called atmospheric boundary layer
winds, is considered in this work. These winds result from large-scale phenomena and are
assumed stationary on a restricted period, representative for the wind effects on structures.
Non-synoptic and transient winds such as downbursts and tornadoes are not considered.

For structures with small dimensions, usual shapes and under the assumption of a dy-
namic response in the fundamental mode, most wind loading codes provide a general set of
design guidelines for synoptic winds. For the design of low- and middle-rise buildings, these
codes have been developed thanks to intensive wind tunnel measurements establishing the
pressure coefficients for the building envelope. As a matter of fact, large structures such
as high-rise buildings and large-span roof structures, often exhibit unusual — even unique
— shape and may be flexible enough to allow for a significant dynamic response in several,
possibly coupled, modes. For instance, the railway station in Liège (Belgium), see the pic-
ture below, is beyond the scope of actual standards and advanced methods are required to
predict the wind loads for the design.

Figure I.1: Picture freely available at http://alltrends.over-blog.net/article-gare-des-
guillemins-a-liege-79792068.html
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If the structure under investigation is out of the scope of actual standards, structural
engineers may opt for either wind tunnel testing or computational fluid dynamics or both to
provide the aerodynamic pressure field, not the design wind loads at this stage. When the
aerodynamic pressure field is measured or computed, the buffeting analysis of the structure
is then performed. This work focuses on the analysis of structures for which a linear behavior
under wind actions can be reasonably assumed.

The buffeting analysis may be conducted in time or frequency domain and in a nodal,
modal or hybrid basis. Among other considerations, the choice of the type of structural
analysis depends on features of the aerodynamic pressure field that may be Gaussian or
mildly to strongly non-Gaussian. For example, the buffeting analysis, in a Gaussian frame-
work, is typically tackled as a spectral analysis. The well-known decomposition into mean,
background and resonant contributions of the wind-induced responses provides an affordable
access to this type of analysis in the everyday practice. As an ultimate outcome of the
analysis, representative values of some structural responses, such as displacements, internal
forces or stresses, have to be estimated for the design and they constitute the envelope of
structural responses. These representative values may be defined in various ways for the
design, e.g., as the mean of the extremes or in terms of some non-exceedance probabilities
(p-quantiles) of the extremes. Additionally, there exist several methods to estimate at first
the extreme value distribution. Actually, the extreme value analysis is an active research
field of paramount importance in wind engineering. The development of new methods to
estimate extreme value distribution or better definition for representative values is not the
scope of the present study and we therefore set back to well-known methods.

For all practical purposes, the buffeting analysis may be separated from the structural
design. Indeed, the study of wind effects on large flexible structures is usually tackled by
structural engineers with expertise in this field while the sizing of the structure or at least,
checking the structural strength is a mission of another team or even engineering office.
Naturally, those in charge of the buffeting analysis should provide the structural responses
to the structural engineers with responsibility for the design. This approach is however not
the common one. Following the checking of structural strength, if structural engineers adapt
structural elements to satisfy the design, a new buffeting analysis is performed and then a
new verification has to be done. The decoupling of the buffeting analysis and the structural
design is, therefore, not really optimal.

Besides, structural engineers seek to design with static wind loads and not blindly with
only structural responses. These static wind loads have to replace the time-dependent wind
loads and reproduce the dynamic response of the structure. On the practical side, the concept
of static wind loads recasts the design procedure into the well-known format of standards and
combination with other codified static loads such as self-weight or snow is straightforward.
Once static wind loads are known, they are used through the iterative design process with-
out repeating cumbersome dynamical analyses. In this framework, structural engineers can
effectively focus on the structural sizing since static analyses are straightforward. Finally, if
major modifications of structural elements or adjustments of the load-bearing system have
been done, a new buffeting analysis is required to cross-check the design.

For decades, this concept of static wind loads for the analysis of civil structures subjected
to wind has aroused interest due to its valuable features. Mainly, such an analysis has to
provide structural responses similar to the extreme values that would be provided by a
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buffeting analysis. If the structure exhibits a dynamic response in its fundamental mode,
most of codes are based on the gust factor approach originally introduced by Davenport in
the early sixties in which the static wind load is the mean wind loading amplified by a factor.
Since this pioneering work, a lot of effort has been devoted to developing accurate static wind
loads. When they are known, they are readily applied to the structure in a straightforward
analysis.

Actually, the wind effects on structures through static loads may be understood as an
envelope reconstruction problem. This problem consists in deriving a set of static loads
targeting the efficient reconstruction of the extreme values of structural responses which are
required for the design. The term “efficient” may cover a large range of features that would
be desirable for these static wind loads. For instance, a minimum number for an optimum
reconstruction would be expected, hence they must be derived very carefully. This issue
constitutes the central core of the studies undertaken in this dissertation.

I.2 Motivations

Since the 1970’s, methods have been developed for reformulating the complex time-space-
dependent distribution of the fluctuating wind load into deterministic space-only dependent
distributions, so-called Static Wind Loads (SWLs), with the purpose to handle the envelope
reconstruction problem.

Equivalent static wind loads

A first method is the Equivalent Static Wind Load (ESWL) such that the application of
this type of loading provides responses in the structure and the same extreme value of a
chosen one as what would result from the buffeting analysis. Formulations of ESWLs are
available for quasi-static and dynamic structural behavior. For dynamic behavior, these
ESWLs are expressed as weighted combinations of background and resonant parts computed
in the nodal and modal basis, respectively. Actually, the methods formulating ESWLs are
associated with a specific basis, nodal or nodal-modal (hybrid). Moreover, no formulation
is given if the dynamic analysis is conducted in the nodal basis, see Table I.1. This has
motivated the investigation of an alternative method, so-called Conditional Expected Load
(CEL), developed no matter the basis in which the structural analysis is conducted: nodal,
modal or hybrid (nodal-modal).

Framework: Gaussian non-Gaussian
Structural behavior: Quasi-static Dynamic Quasi-static Dynamic

Nodal basis X 7 ? ?
Hybrid basis - X ? ?

Table I.1: Limitations of the current methods formulating ESWLs.

Furthermore, several methods developed hitherto to establish ESWLs assume Gaussian
aerodynamic pressures and Gaussian structural responses. Actually, it is tempting to avoid a
formal extension to non-Gaussian processes arguing that current ESWL formulations provide
a very close approximation to the actual static load pattern even if the aerodynamic pressure
field is non-Gaussian.
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Notwithstanding this belief, disharmony has been shown between the “Gaussian” ESWLs
and those obtained with a statistical treatment of wind-tunnel measurements. This has
especially conducted to the study of a non-Gaussian formulation for ESWLs undertaken
in this work. For this purpose a bicubic model for the joint and conditional PDFs of two
non-Gaussian random processes has been derived.

The envelope reconstruction problem

Equivalent static wind loads A first approach to tackle the envelope reconstruction
problem consists in computing the ESWLs associated with all structural responses. For
large and complex structures, the resulting set of loadings is huge but it ensures that the
entire envelope is recovered. The size of this set is expected to be prohibitive, as the ap-
plication of an ESWL related to a specific structural response may reconstruct a certain
fraction of the envelope, with an acceptable tolerance. Thus it appears that a more suitable
approach could be to identify, for instance from influence surfaces and engineering judgment,
some representative structural responses along with their corresponding ESWLs. However,
considering only a few ESWLs may lead to important underestimation of the envelope, es-
pecially if representative structural responses are not selected judiciously. This is feasible
for simple structures but remains hazardous for large ones. Therefore, we foresee that other
kinds of static wind loads are better suited. Nonetheless, this common and elementary option
is considered for comparison in the illustrations.

Basic static wind loads A kind of static wind load, that we called basic, holds two
distinctive features. They are not associated with specific structural responses, and are
naturally ordered by decreasing importance.

For quasi-static structural behaviors, basic SWLs may be obtained, for instance, with
the Covariance Proper Transformation (CPT) method producing wind modes related to the
aerodynamic pressure field, so-called CPT loading modes. For dynamic structural behaviors,
Modal Inertial Loads (MILs) are such that the deflection under those ones gives the modal
shapes. They can be classified as basic SWLs, as well. The former kind focuses on the
wind loading and disregards the load bearing system while the latter only depends on the
modal characteristics. Accordingly to their features, they should be good candidates for the
envelope reconstruction problem.

Though the concept is appealing, two drawbacks are underlined. First, they are more
than“not associated with”specific structural responses since they are completely independent
of the set of structural responses to be reconstructed. Second, the case of hybrid structural
behavior, i.e., the quasi-static and resonant contributions to the variance of structural re-
sponses are similar, is problematic since we can not simply select one kind or the other, see
Table I.2.

Structural behavior: Quasi-static Hybrid Resonant
CPT loading modes X 7 7

Modal inertial loads 7 7 X

Table I.2: Scope of application of CPT loading modes and modal inertial loads in the frame-
work of the envelope reconstruction problem.
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Principal static wind loads Since the aforementioned equivalent and basic SWLs are
not really optimal for the envelope reconstruction problem, a novel kind relevant for any
dynamic behavior is introduced, so-called Principal Static Wind Loads (PSWLs), as an
important contribution of this thesis.

I.3 Personal contributions

The essential contributions of this thesis are:

1. Estimation of modal correlation coefficients using the white noise approxi-
mation

Formulations for the estimation of modal covariances are already available. Those
existing formulations are enhanced with a proper inclusion of the imaginary part of
coherence functions of generalized forces. Indeed, this imaginary part is not always
negligible in spite of some practical habits. The formulation is derived thanks to the
white noise approximation and multiple timescale spectral analysis.

2. Conditional Expected Load (CEL) method

This formulation of ESWLs is able to handle quasi-static, mixed and resonant behaviors
within a unique formulation. The proposed method is general and is relevant for
Gaussian and non-Gaussian processes.

3. Bicubic model for the joint and conditional PDFs

A parametric model for the joint and conditional PDFs of two non-Gaussian processes
is derived based on the Hermite moment model. It is an extension of the well-known
cubic translation model and is the cornerstone to establish ESWLs for a certain class
of non-Gaussian processes.

4. General methodology for the Envelope Reconstruction Problem (ERP)

A complete methodology to apprehend the envelope reconstruction problem is for-
malized. The procedure consists in the successive application of static wind loads to
accurately approximate the envelope with a minimum range of discrepancy. The pro-
cedure, seen as an iterative procedure, is a general concept no matter the structure,
its load-bearing system and structural behavior. Also, it is relevant for Gaussian and
non-Gaussian structural responses.

5. Principal Static Wind Loads (PSWLs)

The principal static wind loads are determined by singular value decomposition. Their
definition makes them naturally suitable to solve the envelope reconstruction prob-
lem. They are still dependent upon the set of structural responses that we want to
reconstruct, though they are not associated with specific structural responses, making
a notable difference. Moreover, they form a suitable orthogonal basis for linear combi-
nations. In addition, they adapt for Gaussian and non-Gaussian structural responses.
Finally, under several circumstances, these loadings degenerate into the CPT loading
modes and modal inertial loads, which thence acts as limit cases.
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6. Formulation of a constrained nonlinear optimization problem

A more elaborated approach to tackle the envelope reconstruction problem is based on
combinations of static wind loads. The combination coefficients are determined with a
constrained nonlinear optimization algorithm formally conceptualized.

The developments numbered 3 to 6 can be found in (Blaise et al., 2012; Blaise and Denoël,
2013a,b; Blaise et al., 2016).

I.4 Outline

The present manuscript is divided into an introduction, five chapters and a conclusion.
Briefly, the organization is as follows.

Chapter I presents the context in which the study was undertaken. Objectives and
potential developments are identified. The personal contributions are listed and the outline
of the manuscript is given.

Chapter II reviews the concepts from the theory of probability used in this dissertation.
The models used to compute the envelope of structural responses are detailed. It describes
also the Gaussian spectral analysis of structures derived in nodal basis, modal basis or
hybrid basis with the background-resonant decomposition. As well, the well-known concept
of white noise approximation is applied to the estimation of modal correlation coefficients.
Finally, applications of the proper orthogonal decomposition technique in the field of wind
engineering are described.

Chapter III formally introduces the envelope reconstruction problem and reviews several
current methods to handle it. A general methodology consisting in an iterative procedure is
proposed. Combinations of static wind loads are considered to speed-up the reconstruction
of the envelope values. The problem of finding these combination coefficients is formulated
as a constrained nonlinear optimization.

Chapter IV is devoted to the concept of equivalent static wind load. A first part
is devoted to current methods such as the load-response correlation method, conditional
sampling technique and hybrid method. The second part focuses on the development of a
novel formulation relevant for various structural behaviors and for Gaussian or non-Gaussian
structural responses. The third part customizes the methodology to handle the envelope
reconstruction problem introduced in Chapter III to the equivalent static wind loads.

Chapter V is dedicated to the novel concept of principal static wind loads. Since
they are determined by singular value decomposition, this matrix factorization is detailed.
Under specific circumstances, limit cases of PSWLs for quasi-static and resonant structural
behaviors are studied. The methodology to handle the envelope reconstruction problem
introduced in Chapter III is enhanced thanks to a distinctive feature of principal static
wind loads.

Chapter VI provides the illustrations of the concepts discussed in this thesis using
three examples: a four-span bridge, a real-life stadium roof and a low-rise building. In the
preceding Chapters, the reader is invited to refer to this one to gain understanding of the
concepts and methods discussed in the thesis.
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Chapter VII summarizes the major outcomes of this work in terms of theoretical and
practical implications and gives recommendations for further investigations.

The glossary of symbols and initials used in the thesis is reported in the nomenclature
on page xix.
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II.1 Introduction

This Chapter describes some usual methods for the buffeting analysis of structures. This
thesis focuses on either the quasi-static analysis in a non-Gaussian framework or the dynamic
analysis in a Gaussian framework. The former is tackled with time-domain analysis and the
latter with a proper recourse to spectral analysis.

Section II.2 discusses probability and stochastic tools to characterize the random response
of structures to random excitations. For sake of brevity, only the materials and concepts
used in the thesis are discussed and this Section is based on well-known references (Papoulis,
1965; Lin, 1976; Preumont, 1994). It also serves to introduce our notations.

As an ultimate outcome of the buffeting analysis, extreme values of some structural
responses, have to be established. They are usually expressed with peak factors, for which
there exists various models, depending on the properties of the considered random process
(Rice, 1945; Kareem and Zhao, 1994; Floris and Iseppi, 1998). In Section II.3 two models
of peak factors for the extreme values of Gaussian and non-Gaussian random processes are
respectively detailed.

The equation of motion is reviewed in Section II.4 and Section II.4.2 introduces the
definitions of envelope and total envelope. The properties of the modal analysis are given
in Section II.5: truncation (Maddox, 1975; Hansteen and Bell, 1979), background-resonant
decomposition along with the modal acceleration method (Dickens et al., 1997).

Section II.6 provides the elementary steps of a Gaussian spectral analysis (Clough and
Penzien, 1993; Preumont, 1994). Section II.7 presents the white noise approximation (Dav-
enport, 1964b, 1967) and its extensions (Denoël, 2009a, 2015). At last, the relevance of the
white noise approximation for the covariance of modal amplitudes that take into account the
imaginary part of the cross-PSD of generalized forces is assessed.

Finally, Section II.8 reviews the Proper Orthogonal Decomposition (POD) which has
been widely applied in wind engineering as an understanding, simplification, modeling and
simulation tool for the structural analysis (Gurley et al., 1997; Solari et al., 2007; Carassale
et al., 2007).

II.2 Theory of probability

II.2.1 Random variables

We use the prime symbol ′ to indicate a random variable x with a non-zero mean µx′ , while
the centered random variable is devoid of this symbol, that yields

x′ = µx′ + x. (II.2.1)

The probability density function ψx(x) is a Lebesgue-integrable function that fulfills the first
and second axioms of Kolmogorov

ψx(x) > 0 ,

ˆ
R
ψx(x)dx = 1, (II.2.2)

and the product ψx(x)dx represents the probability that the random variable x takes a value
between x and x+dx. The cumulative distribution function Ψx(x) gives the probability that
the random variable takes a value lower than a value x
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Ψx(x) =

ˆ x

−∞
ψx(a)da ⇐⇒ ψx(x) =

dΨx(x)

dx
, (II.2.3)

and it is a monotonically nondecreasing function with the conditions

Ψx(−∞) = 0 , Ψx(+∞) = 1. (II.2.4)

The k-th raw moment µk,x′ and central moment µk,x of the random variable x are defined by

µk,x′ = E[(x′)k] =

ˆ
R
(x′)kψx′(x

′)dx′ , µk,x = E[xk] =

ˆ
R
xkψx(x)dx, (II.2.5)

and correspond to the expected value (or mathematical expectation) of x′ and x to the
power k, respectively. The first raw moment is the mean, µ1,x′ ≡ µx′ , and the second central
moment is the variance, µ2,x ≡ σ2

x with σx the standard deviation. The standard deviation
divided by the mean σx/µx′ is a measure of the dispersion of the random variable around its
mean. The first four cumulants κk,x of the random variable x are expressed in terms of the
central moments, as

κ1,x = 0 , κ2,x = µ2,x , κ3,x = µ3,x , κ4,x = µ4,x − 3 (µ2,x)
2 . (II.2.6)

The skewness and excess coefficients are respectively defined as the ratio of the third and
fourth cumulants to the third and fourth powers of σx

γ3,x =
κ3,x

σ3
x

, γe,x =
κ4,x

σ4
x

. (II.2.7)

If the random variable is Gaussian, the skewness and excess coefficients are both equal to 0,
otherwise they indicate the level of departure from a Gaussian distribution of the random
variable.

Two random variables The joint probability density function ψxy(x, y) is a Lebesgue-
integrable function that fulfills the first and second axioms of Kolmogorov,

ψxy(x, y) > 0 ,

¨
R2

ψxy(x, y)dxdy = 1, (II.2.8)

and ψxy(x, y)dxdy represents the probability that the random variables x and y take values
between x and x+ dx, y and y+ dy, respectively. The joint cumulative distribution function
Ψxy(x, y) is defined by

Ψxy(x, y) =

ˆ x

−∞

ˆ y

−∞
ψxy(a, b)dadb ⇐⇒ ψxy(x, y) =

∂2Ψxy(x, y)

∂x∂y
, (II.2.9)

where Ψxy(x, y) is a monotonically nondecreasing function with the conditions

Ψxy(−∞, y) = Ψxy(x,−∞) = 0 , Ψxy(+∞,+∞) = 1, (II.2.10)

and

Ψxy(x,+∞) = Ψx(x) , Ψxy(+∞, y) = Ψy(y). (II.2.11)
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The cross-central moments of the random variables x and y are given by

E[xmyn] =

¨
R2

xmynψxy(x, y)dxdy, (II.2.12)

where m and n are the orders of x and y, respectively. The covariance of the two random
variables is defined as

σxy = E[xy] =

¨
R2

x y ψxy(x, y)dxdy. (II.2.13)

The correlation coefficient, defined as

ρxy =
σxy
σxσy

, (II.2.14)

is a measure of the degree of linear dependence between the two random variables. The
conditional probability density function of x given y is expressed as

ψx|y(x, y) =
ψxy(x, y)

ψy(y)
. (II.2.15)

The conditional expected value of x given y is obtained as

µx|y (y) =

ˆ
R
xψx|y(x, y)dx. (II.2.16)

Gaussian framework The probability density function of a zero-mean Gaussian random
variable x reads

ψNx (x) =
1√

2πσx
exp

(
−1

2

x2

σ2
x

)
, (II.2.17)

and the joint probability density function of two zero-mean Gaussian variables x and y is
expressed as

ψNxy(x, y) =
1

2πσxσy
√

1− ρ2
xy

exp

−
(
x2

σ2
x

− 2ρxy
xy

σxσy
+
y2

σ2
y

)
2(1− ρ2

xy)

 , (II.2.18)

with ρxy the correlation coefficient between these two variables. Following definition (II.2.15),
the conditional PDF of x given y is a Gaussian variable as well, given by

ψNx|y(x, y) =
1√

1− ρ2
xy

ψNx

x−
y

σy
ρxyσx√

1− ρ2
xy

 , (II.2.19)

with a standard deviation σNx|y =
√

1− ρ2
xy and a conditional expected value equal to

µNx|y (y) =
y

σy
ρxyσx. (II.2.20)

This relation is used for developments in Chapter IV.
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II.2.2 Stochastic processes

The developments in this thesis apply to homogeneous random processes. Also called sta-
tionary random processes, this kind of process exhibits several important features for the
structural analysis. The first rank probability density function

ψx(x), (II.2.21)

of the random process x(t) is not a function of time t and ψx(x)dx represents the probability
that the process takes a value between x and x+ dx at any time t. So, at the first rank, the
random process may be seen as a random variable.

However, to adequately characterize the random process in a Gaussian framework, two
different times have to be considered. For this purpose, the second rank probability density
function

ψx(x1, t1;x2, t2), (II.2.22)

is introduced such that ψx(x1, t1;x2, t2)dx1dx2 represents the probability that the process x
takes a value between x1 and x1 + dx1 at time t1 and a value between x2 and x2 + dx2 at
time t2. Since stationary implies that

ψx(x1, t1;x2, t2) = ψx(x1, t1 + τ ;x2, t2 + τ) ∀τ ∈ R, (II.2.23)

the second order probability density only depends on the time lag t2−t1. The autocorrelation
function, defined as

Rxx(τ) = E [x(0)x(τ)] =

¨
R2

ψx(x1, 0;x2, τ)dx1dx2, (II.2.24)

gives the correlation between values of the process at different times. By definition, this
function is symmetric, i.e., Rxx(τ) = Rxx(−τ) and attains its maximum at the origin
Rxx(0) ≥ Rxx(τ) that is equal to the variance Rxx(0) = σ2

x.
The Fourier transform of the autocorrelation function defines the (mean-square) univari-

ate power spectral density

Sxx(ω) = F [Rxx(τ)] =
1

2π

ˆ
R
Rxx(τ)e−iωτdτ, (II.2.25)

of the random process x(t). For stationary random processes, the Wiener-Khintchine theorem
asserts that the autocorrelation function and the power spectral density function form a
Fourier transform pair. The inverse Fourier transform of the power spectral density

Rxx(τ) = F−1 [Sxx(ω)] =

ˆ
R
Sxx(ω)eiωτdω, (II.2.26)

returns the autocorrelation function. The value at the origin of the autocorrelation function,
i.e., at τ = 0, reveals the fundamental property of the power spectral density: its integral
over the frequency domain gives the variance of the random process

σ2
x =

ˆ
R
Sxx(ω)dω. (II.2.27)

In other words, the power spectral density gives the distribution of the variance over the
frequency domain. By extension, the i-th spectral moment is defined as
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mi,x =

ˆ
R
|ω|i Sxx(ω)dω, (II.2.28)

where m0,x = σ2
x, m2,x = σ2

ẋ and m4,x = σ2
ẍ are the variances of the random process x,

of its first time derivative ẋ(t) =
dx(t)

dt
, and of its second time derivative ẍ(t) =

d2x(t)

dt2
,

respectively.

Two random processes The first rank joint probability density function of two random
processes x(t) and y(t) is written

ψxy(x, y), (II.2.29)

and ψxy(x, y)dxdy represents the probability that x(t) and y(t) take values between x and
x + dx and y and y + dy at any time t. As before, to adequately characterize these two
random processes in a Gaussian framework, two different instants have to be considered. We
introduce the second rank joint probability density function

ψxy(x, t1; y, t2), (II.2.30)

such that ψxy(x, t1; y, t2)dxdy represents the probability that the processes x(t1) and y(t2)
take values between x and x + dx at time t1 and a value between y and y + dy at time t2.
Since stationary implies that

ψxy(x, t1; y, t2) = ψxy(x, t1 + τ ; y, t2 + τ) ∀τ ∈ R, (II.2.31)

the second rank joint probability density function only depends on the time lag t2− t1. The
cross-correlation function, defined as

Rxy(τ) = E [x(0) y(τ)] =

¨
R2

ψxy(x, 0; y, τ)dxdy, (II.2.32)

gives the correlation between values of the two random processes at different times. Its value
at the origin is equal to the covariance Rxy(0) = σxy.

The Fourier transform of the cross-correlation function defines the (mean-square) cross-
power spectral density

Sxy(ω) = F [Rxy(τ)] =
1

2π

ˆ
R
Rxy(τ)e−iωτdτ, (II.2.33)

of two random processes x(t) and y(t). Unlike the univariate one, the cross-power spectral
density is a complex function. The inverse Fourier transform of the cross-power spectral
density

Rxy(τ) = F−1 [Sxy(ω)] =

ˆ
R
Sxy(ω)eiωτdω, (II.2.34)

gives the cross-correlation function. The value at the origin of the cross-correlation function,
i.e., at τ = 0, reveals the fundamental property of the cross-power spectral density: its
integral over the frequency domain gives the covariance between the two random processes

σxy =

ˆ
R
Sxy(ω)dω. (II.2.35)
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The cross-power spectral density satisfies

|Sxy(ω)|2 ≤ Sy(ω)Sx(ω), (II.2.36)

and the relation

Γxy(ω) =
Sxy(ω)√
Sy(ω)Sx(ω)

, (II.2.37)

defines the complex-valued coherence function Γxy(ω).

II.2.3 Random vectors

An m× 1 random vector x is a vector of m stationary random processes, denoted by

x(t) =



x1(t)
...

xi(t)
...

xm(t)


, (II.2.38)

and the m× 1 vectors µx′ and σx

µx′ =



µx′1
...
µx′i
...

µx′m


, σx =



σx1

...
σxi
...

σxm


, (II.2.39)

collect the mean and standard deviation of each stationary random process, respectively.
The covariance matrix is denoted by

Σx =


Σx

11 · · · Σx
1i · · · Σx

1m
. . .

...
Σx
ii Σx

im

Sym.
. . .

...
Σx
mm

 =


σ2

x1
· · · ρx1xiσx1σxi · · · ρx1xmσx1σxm
. . .

...
σ2

xi
ρxixmσxiσxm

Sym.
. . .

...
σ2

xm

 ,
(II.2.40)

and collects the variance on its diagonal and the covariance on the off-diagonal elements,
while the correlation matrix reads

Rx =


1 · · · ρx1xi · · · ρx1xm

. . .
...

1 ρxixm

Sym.
. . .

...
1

 . (II.2.41)



18 CHAPTER II. BUFFETING ANALYSIS OF CIVIL STRUCTURES

Also, the PSD matrix is denoted by

Sx(ω) =


Sx

11(ω) · · · Sx
1i(ω) · · · Sx

1m(ω)
. . .

...
Sx
ii(ω) Sx

im(ω)

Sym.
. . .

...
Sx
mm(ω)

 , (II.2.42)

and collects the auto-PSD on its diagonal, while the cross-PSD are the off-diagonal elements.
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II.3 Representative extreme values

In structural engineering, representative extreme values of a zero-mean random process x(t)
are usually derived from extreme value theory. The maximum (resp.minimum) representative
value is usually based on the statistics of the largest maximum (resp. smallest minimum) of
x(t) over a reference period T .

Mathematically, the i-th maximum x(t) = ξ̂i, positive or negative, occurs in the interval
[t; t+ dt] if the following three conditions are fulfilled

ẍ(t) < 0, ẋ(t) > 0, ẋ(t+ dt) < 0. (II.3.1)

The maximum of the nmax maxima occurring in the observation period, is defined as the
largest maximum (positive extreme) x̂

x̂ = max
i=1,...nmax

ξ̂i, (II.3.2)

which is seen as a random variable. The i-th minimum x(t) = ξ̌i, positive or negative, occurs
in the interval [t; t+ dt] if the following three conditions are fulfilled

ẍ(t) > 0, ẋ(t) < 0, ẋ(t+ dt) > 0. (II.3.3)

The minimum of the nmin minima occurring in the observation period, is defined as the
smallest minimum (negative extreme) x̌

x̌ = min
i=1,...nmin

ξ̌i, (II.3.4)

which is seen as a random variable.
In a Gaussian framework, Cartwright and Longuet-Higgins (1956) derived the PDFs of

the positive extreme x̂ (resp. negative extreme x̌) assuming that the nmax maxima (resp.nmin

minima) occur independently of each other (Poisson assumption). This is described in Sec-
tion II.3.1.

In a non-Gaussian framework, several methods exist to estimate the extreme value PDF
such as the block maxima method, the peaks-over-threshold method, the average condi-
tional exceedance rate method and translation process method, see Ding and Chen (2014)
for a review. The translation process method based on the works of Winterstein (1988) is
selected in this work and described in Section II.3.2. The method is well-known and ac-
curate for slightly to mildly softening Gaussian processes. It is therefore relevant for the
examples treated in Chapter VI. In case of strongly non-Gaussian processes, the translation
process method is less accurate and a mixture distribution model (Ding and Chen, 2014) is
recommended instead.

When the extreme value distribution is estimated, a choice of the representative value
has to be made. This value is termed “the envelope value” in this work.

Envelope values

The envelope value of the largest maximum over a reference period T is commonly expressed
by

x(max) = g(max)σx + κ̂σx̂, (II.3.5)
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where g(max) is called the peak factor for the mean largest maximum

E[x̂] = g(max)σx, (II.3.6)

and κ̂ is a coefficient that multiplies the standard deviation σx̂ of the largest maximum
variable (II.3.2). The same definition holds for the envelope value of the largest minimum
over a reference period T

x(min) = g(min)σx + κ̌σx̌, (II.3.7)

where g(min) is called the peak factor for the mean smallest minimum

E[x̌] = g(min)σx, (II.3.8)

and κ̌ is a coefficient that multiplies the standard deviation σx̌ of the smallest minimum
variable (II.3.4).

For instance, if the largest maximum PDF is considered as a Gumbel distribution, the
coefficients κ̂ = 0, 0.636 and 1.025 correspond to the p-quantiles (or non-exceedance proba-
bilities) of 57%, 78% and 86%. These three statistics are often used to compare the accuracy
of methods developed in the framework of the extreme value theory. As stated in the in-
troduction of Chapter I, it is not the purpose of this work to compare different definitions
for the representative value. It is therefore not discussed further, and we follow the same
objectives as those presented by Chen and Zhou (2007) who stress that “The precise choice
of the characteristic value is rather arbitrary provided it is consistent, convenient and useful
for practical design applications.”

For the sake of illustration, it is therefore arbitrarily chosen to consider the mean largest
maximum (resp. mean smallest minimum) for the envelope value of the largest maximum
(resp. smallest minimum)

x(max) = g(max)σx ; x(min) = g(min)σx, (II.3.9)

and only this representative value is discussed in Sections II.3.1 and II.3.2. It is emphasized
that this arbitrary choice does not necessarily ease the envelope reconstruction problem,
which is the scope of Chapter III and illustrated in Chapter VI. It is just a choice among
others. Additionally, the formulation of the envelope reconstruction problem discussed in
Chapter III is not associated with a specific choice of the representative value and other
models can also be used (see Appendix A).

II.3.1 Gaussian framework

Assuming the standardized random process η = x/σx is Gaussian, Rice (1945) derived the
probability density functions of its maxima and minima

ψNηmax(η) =
1

(2π)
1
2

εe− 1
2
η2/ε2 + (1− ε2)

1
2ηe−

1
2
η2
ˆ η(1−ε2)

1
2 /ε

−∞
e−

1
2
t2dt

 , (II.3.10)

ψNηmin(η) =
1

(2π)
1
2

εe− 1
2
η2/ε2 − (1− ε2)

1
2ηe−

1
2
η2
ˆ −η(1−ε2)

1
2 /ε

−∞
e−

1
2
t2dt

 , (II.3.11)
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Figure II.1: PDF of maxima for six values of the spectral parameter. Figure reproduced
from Cartwright and Longuet-Higgins (1956).

and the associated cumulative distribution functions

ΨNηmax(η) =
1

(2π)
1
2

ˆ η/ε

−∞
e−

1
2
t2dt− (1− ε2)

1
2 e−

1
2
η2
ˆ η(1−ε2)

1
2 /ε

−∞
e−

1
2
t2dt

 , (II.3.12)

ΨNηmin(η) =
1

(2π)
1
2

ˆ η/ε

−∞
e−

1
2
t2dt+ (1− ε2)

1
2 e−

1
2
η2

(2π)
1
2 −
ˆ η(1−ε2)

1
2 /ε

−∞
e−

1
2
t2dt

 .
(II.3.13)

The PDF and CDF of the maxima depend on a single parameter ε, so-called spectral param-
eter, defined by

ε2 = 1− (m2,x)
2

m0,xm4,x

. (II.3.14)

It is a dimensionless number, 0 6 ε 6 1, indicating the relative bandwidth of the power
spectral density of x. Narrow and large band-processes have a spectral parameter close to 0
and 1, respectively. Two limiting cases for ψNηmax(η) are (i) ε = 0, a Rayleigh distribution and
(ii) ε = 1, a Gaussian distribution. Figure II.1 depicts the PDF of maxima for six values of
the spectral parameter.

Rice (1945) derived the formulation of the frequency of zero up-crossings with a positive
slope (known as Rice’s formula), given by

ν0 =
1

2π

(
m2,x

m0,x

) 1
2

=
1

2π

σẋ
σx
, (II.3.15)

and the frequency of maxima as

νmax =
1

2π

(
m4,x

m2,x

) 1
2

=
1

2π

σẍ
σẋ
. (II.3.16)

The zero up-crossing rate ν0 is also named the central frequency where the energy is concen-
trated in the random process.



22 CHAPTER II. BUFFETING ANALYSIS OF CIVIL STRUCTURES

Figure II.2: PDFs of the random process and of its largest maximum for three values of
ν0T = 100, 1000 and 10000. Figure reproduced from Davenport (1964a).

Cartwright and Longuet-Higgins (1956) derived the probability density functions of the
largest of nmax maxima and of the smallest of nmin minima, respectively as

ψNη̂ (η) =
d

dη

[
ΨNηmax(η)

]nmax
= nmax

[
ΨNηmax(η)

]nmax−1
ψNηmax(η), (II.3.17)

ψNη̌ (η) =
d

dη

[
ΨNηmin(η)

]nmin = nmin

[
1−ΨNηmin(η)

]nmin−1
ψNηmin(η), (II.3.18)

assuming that the nmax maxima (resp.nmin minima) occur independently of each other (Pois-
son assumption) over the observation period T . Figure II.2 depicts the PDF of η and PDFs
of its largest maximum η̂ for three values of ν0T .

An asymptotic expression of the peak factor, valid for values of nmax greater than 50 and
0 6 ε� 1, is given by

g(max) = E[η̂] =

√
2 ln

(
(1− ε2)

1
2nmax

)
+

γ√
2 ln

(
(1− ε2)

1
2nmax

) , (II.3.19)

where γ = 0.5772 is Euler’s constant. This approximation is applicable to most of the
random processes encountered in wind engineering, assuming they are Gaussian.

Using (II.3.14), (II.3.15) and (II.3.16), Davenport (1964a) formulated the number of
maxima during a reference period as

nmax =
ν0T

(1− ε2)
1
2

, (II.3.20)

and inserting (II.3.20) into (II.3.19), the peak factor reads

g(max) =
√

2ln (ν0T ) +
γ√

2ln (ν0T )
. (II.3.21)

Under the assumption of Gaussianity, the peak factors for the mean smallest minimum and
the mean largest maximum only differ by their sign, i.e.,

g(min) = −g(max). (II.3.22)
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Figure II.3 illustrates the evolution of the peak factor as a function of ν0T . In wind engi-
neering and for observation periods of 10 minutes, the typical value of ν0T lies between 50
and 1000 that gives a range for the peak factor of [3, 3.9].

Figure II.3: Peak factor as a function of ν0T . The graph on the right is given as a semi-log
plot.

II.3.2 Non-Gaussian framework - Hermite moment model

In the Hermite moment model, the PDF of a non-Gaussian random variable is modeled
thanks to a cubic transformation of a Gaussian variable. This model fits the first four cumu-
lants. Actually, in wind engineering applications, the statistical knowledge of non-Gaussian
random processes is usually limited to the first four cumulants. Moreover, softening random
processes, i.e., γe,x > 0, are more common than hardening random processes, i.e., γe,x < 0,
since the non-Gaussian aerodynamic pressures are usually softening ones. Winterstein (1988)
suggested the use of Hermite series instead of Charlier or Edgeworth series, that can exhibit
limitations, especially in the tail regions. Thence, the Hermite moment model is adopted in
the thesis.

The proposed polynomial transformation method is a 3-parameter model and consists in
a cubic monotonic transformation g (·) of a standard Gaussian random variable u, such as

x = g(u) =
α

b

(
u3

3
+ au2 + (b− 1)u− a

)
, (II.3.23)

where the parameters α, a and b are tuned to match the variance σ2
x, skewness coefficient γ3,x

and excess coefficient γe,x of the zero-mean random variable x. Provided g(u) is monotonic,
the PDF of the variable x reads

ψCx(x) =
ψNu (u(x))∣∣ dg
du

(u(x))
∣∣ , (II.3.24)

where symbol “C” stands for “Cubic translation model” and u(x) = g−1(x) is explicitly given
as

u(x) =
[
ζ(x) +

√
c+ ζ2(x)

]1/3

+
[
ζ(x)−

√
c+ ζ2(x)

]1/3

− a, (II.3.25)
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with c = (b− 1− a2) 3 and ζ(x) = 3
2
b
(
a+

x

α

)
− a3. Writing (II.3.24) and (II.3.25) require

that the cubic transformation (II.3.23) is monotonic. This is ensured by the monotone
limitation b− 1− a2 ≥ 0 (Choi and Sweetman, 2010).

Introducing the convenient variables h3 and h4 to satisfy the variance σ2
x leads to

a =
h3

3h4

, b =
1

3h4

, α =
σx√

1 + 2h2
3 + 6h2

4

, (II.3.26)

resulting in a set of nonlinear equations in two variables (Gurley et al., 1997)

γ3,x =
2h3(3 + 4h2

3 + 18h4 + 54h2
4)

(
√

1 + 2h2
3 + 6h2

4)3
, (II.3.27)

γ4,x =
3(1 + 20h4

3 + 8h4 + 84h2
4 + 432h3

4 + 1116h4
4 + 4h2

3(5 + 48h4 + 186h2
4))

(1 + 2h2
3 + 6h2

4)2
, (II.3.28)

for the skewness and kurtosis coefficients, respectively. The solution of equations (II.3.27)-
(II.3.28) may be computed using Newton’s iterative method. Alternatively, several approx-
imate solutions are given in (Winterstein, 1988; Winterstein and Kashef, 2000; Yang et al.,
2013).

The monotone limitation limits the effective region of skewness and excess coefficients
where the approximation of random variables using the cubic transformation is applicable. In
case of slight deviations from the monotone limitation, adjustments are nevertheless proposed
in (Peng et al., 2014). This limitation is illustrated by the curve in Figure II.4-(a). The dot
and plus markers (in orange) identify two sets of 4 couples of (γ3,x,γe,x) for which the PDFs,
computed with (II.3.24), are illustrated in Figure II.5 along with the normal distribution.

Figure II.4: (a) Monotone limitation (in blue). The domain of applicability of the Hermite
moment model (in its original formulation) is inside the two lines. (b) Contour plot of
non-Gaussian to Gaussian ratio of mean zero up-crossing rate.

The set of couples (γ3,x,γe,x) identified with dot markers gives couples of increasing skew-
ness and excess coefficients while the set of couples (γ3,x,γe,x) identified with plus markers
gives increasing excess coefficients with the skewness coefficient equal to 0.
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Figure II.5: Examples of probability density functions, Gaussian (in blue) and non-Gaussian
(in orange) obtained with the Hermite moment model for 4 sets of values of (γ3,x, γe,x).

The zero up-crossing rate with cubic transformation is expressed as

νC0 = ν0
1

(α/σx)2(1 + 4h2
3 + 18h2

4)
, (II.3.29)

and the ratio νC0/ν0 is illustrated in Figure II.4-(b).
The PDFs of the largest maximum and smallest minimum of a non-Gaussian random

process, modeled with the cubic transformation (II.3.23), are respectively given by

ψCη̂ (η) =
ψNη̂ (g−1(η))∣∣ dg
du

(g−1(η))
∣∣ , ψCη̌ (η) =

ψNη̌ (g−1(η))∣∣ dg
du

(g−1(η))
∣∣ . (II.3.30)

Figure II.6 illustrates the PDFs of largest maximum and smallest minimum when the ran-
dom process is Gaussian (in blue) and non-Gaussian modeled with the cubic transformation
(in orange). The upper graph of Figure II.6 illustrates PDFs for increasing values of the ex-
cess coefficient while the skewness is set equal to 0. The PDFs for the largest maximum and
minimum for the non-Gaussian process are similar, as in the Gaussian case. However they
are more spread and displaced towards larger values when the excess coefficient increases.
Peak factors are still equal in absolute value, i.e., g(min) = −g(max), since odd cumulants are
zero.

The lower graph of Figure (II.6) illustrates PDFs for increasing values of both the skew-
ness and excess coefficients. In this case, the PDFs of largest maxima and minima are
no longer similar and the non-Gaussian peak factors are different in absolute values, i.e.,



26 CHAPTER II. BUFFETING ANALYSIS OF CIVIL STRUCTURES

Figure II.6: PDFs of the Gaussian process (in blue) and non-Gaussian process (in orange)
and PDFs of the largest maximum and minimum for values of ν0T = 100.

g(min) 6= −g(max). For positive skewness coefficient, the peak factor for the mean largest max-
imum is larger than the peak factor for the mean smallest minimum (in absolute value), i.e.,
g(max) > −g(min).

Kareem and Zhao (1994) derived a peak factor formulation for the mean largest maximum
and minimum of a non-Gaussian process modeled as a cubic transformation of a Gaussian
one. The peak factor for the mean largest maximum is given by

g(max) = α

{(
β +

γ

β

)
+ h3

(
β2 + 2γ − 1

)
+ h4

[
β3 + 3β (γ − 1) +

3

β

(
π2

12
− γ +

γ2

2

)]}
,

(II.3.31)
and the peak factor for the mean smallest minimum reads

g(min) = −α
{(

β +
γ

β

)
− h3

(
β2 + 2γ − 1

)
+ h4

[
β3 + 3β (γ − 1) +

3

β

(
π2

12
− γ +

γ2

2

)]}
,

(II.3.32)

where β =
√

2ln (νC0T ). If the skewness coefficient takes values different from 0, i.e., h3 6= 0
in the above two equations, the peak factors for the mean smallest minima and the mean
largest maximum are not equal in absolute value

g(min) 6= −g(max). (II.3.33)



II.3. REPRESENTATIVE EXTREME VALUES 27

The values of the “non-Gaussian” peak factor for the mean largest maximum associated with
ν0T = 50, 100 and 600 are illustrated in Figure II.7.

Figure II.7: Contour plots of the non-Gaussian peak factor for three values of ν0T .
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II.4 Equation of motion

The equation of motion of a linear dynamic structure modeled with finite elements is

Mẍ(t) + Cẋ(t) + Kx(t) = f(t), (II.4.1)

where M, C and K denote nt×nt mass, damping and stiffness matrices, respectively with nt
the number of degrees of freedom (DOFs). The nt×1 vectors x(t), ẋ(t) and ẍ(t) collect nodal
displacements (that comprise both deflections and rotations), velocities and accelerations,
respectively. The nt × 1 vector f(t) collects the applied nodal forces.

The matrices M, C and K are obtained with standard finite element techniques and this
is not further discussed here, see e.g., (Zienkiewicz and Taylor, 1991) for details.

Applied nodal forces

The stationary random aerodynamic pressures modeling wind actions are gathered in an
nl × 1 vector p(t). The external nodal forces are obtained by linear combinations of p(t)
through

f = Ap, (II.4.2)

with A an nt × nl rectangular transformation matrix of local influence areas.

Elastic forces

Elastic forces f e(t), also called “internal forces”, are defined as the product Kx and thence,
equation for the nodal displacements (II.4.1) may be rewritten

Kx = f e, (II.4.3)

where elastic forces f e(t) are also expressed by

f e = f − f i − fd, (II.4.4)

with inertial forces f i(t) defined as

f i = Mẍ, (II.4.5)

and damping forces fd(t) given by

fd = Cẋ. (II.4.6)

The superscripts “e, i and d” stand for “elastic”, “inertial” and “damping” forces, respectively.

Quasi-static behavior of the structure

If the inertial and damping terms in (II.4.1) are negligible or neglected, the quasi-static nodal
displacements xb(t) are obtained by solving

Kxb = f , (II.4.7)

where the superscript “b” stands for “background”.
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Resonant component

For structures with a dynamic structural behavior, the nodal displacements derived from
(II.4.1) may be seen as an addition of a quasi-static (background) component xb(t) = K−1f(t)
and a resonant component xr(t), such that

x = xb + xr, (II.4.8)

where the superscript “r” stands for “resonant”.

II.4.1 Structural responses

Structural responses, sometimes referred to as “load effects”, “wind-induced responses”, or
simply “responses” in the literature, are required for the structural design. For instance,
they include displacements, internal forces, reactions or stresses. Figure II.8 illustrates some
structural responses in three kinds of structures: (a) top displacement and support reac-
tions of a tower, (b) mid-span displacement, shear force, bending moment and reaction in a
multi-span beam and (c) support reactions and bending moments in a frame. These design
quantities are referred to as structural responses in this document.

Figure II.8: Examples of structural responses in three kinds of structures: (a) a tower, (b) a
multi-span beam and (c) a frame.

We only consider in this work structural responses r(t) that are obtained by linear com-
binations of the nodal displacements

r = Ox, (II.4.9)

where r(t) is an nr × 1 vector and O is an nr ×nt matrix of influence coefficients. Note that
the vector of structural responses r(t) may simply collect the nodal displacements, in which
case the matrix of influence coefficients degenerates in the identity matrix: O = I.

The structural responses may also be expressed in terms of elastic forces as

r = Lf e, (II.4.10)

where L = OK−1 is another nr × nt matrix gathering influence coefficients.
With (II.4.9), the covariance matrices of structural responses and their first time deriva-

tive are given by
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Σr = OΣxOT , Σṙ = OΣẋOT, (II.4.11)

or alternatively with (II.4.10)

Σr = LΣfeLT , Σṙ = LΣḟeLT. (II.4.12)

Quasi-static structural behavior

The background structural responses are directly obtained by linear combinations of the
aerodynamic pressures through

rb = Bp, (II.4.13)

with B = LA being an nr × nl matrix of influence coefficients.
The covariance matrices of the structural responses and their first time derivative are

given by

Σrb = BΣpBT , Σṙb = BΣṗBT. (II.4.14)

II.4.2 Envelope of structural responses

Thanks to the developments made in Section II.3, the extreme values of structural responses
can be established. Actually, these extreme values for the (zero-mean) fluctuating part of
structural responses, minima and maxima (abbreviated to min and max, respectively), define
an envelope denoted by (

r(min), r(max)
)
,

and the envelope value associated with the i-th structural response is obtained by

r
(m)
i = g

(m)
i σri , (II.4.15)

where the superscript (m) refers to either (min) or (max). The envelope value r
(min)
i (resp.r

(max)
i )

corresponds to the mean smallest minimum (II.3.7) (resp.the mean largest maximum (II.3.5))
occurring on an reference period T during which the wind is considered as stationary. Under
the assumption of Gaussianity and linearity of the response, the mean smallest minimum
and the mean largest maximum only differ by their sign, i.e.,

r(min) = −r(max), (II.4.16)

leading to a symmetric envelope. Non-Gaussianity of the structural responses (with γ3 6= 0)
leads to an asymmetric envelope, i.e.,

r(min) 6= −r(max). (II.4.17)

The total envelope (
r′(min), r′(max)

)
, (II.4.18)

(including the mean component) is obtained by a shift of the envelope of the fluctuating part

r′(m) = µr′ + r(m). (II.4.19)
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Ultimately, the design of structural members is considered by adding to this total envelope,
the structural responses resulting from permanent loads, e.g., the self-weight. In the context
of the Eurocodes, a single design envelope

(
r′(d,min), r′(d,max)

)
is then obtained by

r′(d,m) = γplr
(pl) + γqr

′(m), (II.4.20)

where γpl and γq are the partial safety factors for the permanent and the variable loads, re-
spectively and r(pl) is an nr×1 vector collecting the structural responses under the permanent
loads.

II.5 Modal basis

The normal modes of vibration constitute an optimum basis for the representation of flexible
structures under a broadband loading (Géradin and Rixen, 2014). They are obtained by
solving the generalized undamped eigenvalue problem(

K− ω2
jM
)

Φj = 0, (II.5.1)

where Φj is the j-th normal mode of vibration (mode shape) and the eigenvalue ω2
j is the

square of the j-th natural circular frequency. The mode shapes are orthogonal in the metric
space of (K,M) that yields the following square diagonal matrices

ΦTMΦ = diag (mj) , ΦTKΦ = diag
(
ω2
jmj

)
, (II.5.2)

where mj is the modal mass of the j-th mode.

Scaling of the mode shapes

The normal mode of vibrations derived from (II.5.1) are unity-scaled or mass-normalized
if for each mode, a unit value is assigned to the largest (in absolute value) translational
displacements or the modal mass, respectively. The latter normalization is adopted here and
(II.5.2) reads

ΦTMΦ = I , ΦTKΦ = Ω, (II.5.3)

where Ω = diag(ω2
j ) is an nt × nt diagonal matrix collecting on its diagonal the squares of

the natural circular frequencies.
In a modal basis, the nodal displacements are approximated by

x ' Φq, (II.5.4)

where Φ is the nt×nm matrix of mode shapes (nm � nt) collecting the nm retained normal
modes of vibration and q(t) is an nm × 1 vector collecting their amplitudes. Projection of
the equation of motion (II.4.1) into the new modal coordinates q(t) reads

Iq̈ + Dq̇ + Ωq = g, (II.5.5)

where I = ΦTMΦ, D = ΦTCΦ, Ω = ΦTKΦ are the nt × nm modal mass (normalized to
unity), damping and stiffness matrices, respectively, and

g(t) = ΦTf(t), (II.5.6)
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is an nm × 1 vector of generalized forces and where q(t), q̇(t) and q̈(t) are the modal
displacements, velocities and accelerations, respectively.

Truncation

The efficiency of the modal basis is attributable to the fact that it usually requires a small to
moderate amount of mode shapes to provide a reliable estimation of the resonant component
of nodal displacements xr, see (II.4.8). In the analysis of large scale civil structures with a
number of degrees of freedom larger than or similar to 104, the size of the modal matrices is
much smaller than the original structural matrices. The truncation of the modal basis only
retains modal amplitudes with a significant resonant contribution in the overall dynamic of
the structure.

Modal acceleration method

Actually, the truncated modal basis is not well-suited to provide a reliable estimation of the
background component of structural responses. Indeed, a larger number of mode is usually
required than for the resonant component (Maddox, 1975; Hansteen and Bell, 1979). To
circumvent this issue, the modal acceleration method (Dickens et al., 1997) computes the
background component of nodal displacements in the nodal basis by means of (II.4.7) and
the resonant component in the modal basis using

xr = K−1

(
−M

nm∑
i=1

Φiq̈i −C
nm∑
i=1

Φiq̇i

)
. (II.5.7)

Differently, the resonant component of nodal displacements may be obtained with

xr = Φqr, (II.5.8)

where qr is the resonant component of modal displacements given by

qr = q− qb, (II.5.9)

with quasi-static modal displacements found as

qb = Ω−1g. (II.5.10)

Modal inertial loads

For later developments, the Modal Inertial Loads (MILs) are introduced here. They are
defined as

F(M) = KΦ, (II.5.11)

with F(M) an nt×nm matrix such that the k-th column F
(M)
k is a modal inertial load. When

it is statically applied to the structure, it produces the exact k-th modal shape Φk. The
symbol “M” stands for “Modal” (inertial loads).
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Decoupling of the equations of motion in the modal basis

For proportional damping, i.e., the modal damping matrix D is diagonal, the system of
equations (II.5.5) is decoupled and we simply solve for each mode

q̈m + 2ξmωmq̇m + ω2
mqm = gm. (II.5.12)

With this assumption, the solution of (II.5.5) is greatly speeded-up. The reduction of the
computing time is especially relevant for large structures. Models such as the Rayleigh-type
damping, described hereinafter and the modal damping provide such a damping and are
used in this document.

Although the structural damping in a structure is commonly supposed to be proportional,
this assumption cannot always be made (Morzfeld et al., 2009). Recently, an approximation
based on an asymptotic expansion of the modal transfer matrix has been proposed to partially
account for off-diagonal terms of the modal damping matrix, but still with a set of uncoupled
equations (Denoël and Degée, 2009; Canor, Blaise and Denoël, 2012).

Rayleigh damping

In classical structural mechanics, the Rayleigh damping model is often used (Rayleigh, 1945).
In this model, the damping matrix C is constructed through a linear combination of the mass
and stiffness matrices

C = αM + βK, (II.5.13)

where the Rayleigh damping coefficients α, β are real positive scalars with [rad/s] and [s/rad]
units, respectively. With (II.5.13), the modal damping matrix D is diagonal and said to be
proportional. The damping coefficient in the m-th mode defined by

ξm =
Dmm

2ωm
, (II.5.14)

is, in the Rayleigh model, given by

ξm =
α

2ωm
+
βωm

2
. (II.5.15)

The two coefficients α, β are obtained by imposing the damping coefficients in two modes,
let say the n-th and m-th modes with ωn > ωm, that yields

α = 2ωmωn
ωmξn − ωnξm
ω2
m − ω2

n

, (II.5.16)

β = 2
ωmξm − ωnξn
ω2
m − ω2

n

. (II.5.17)

Damping and inertial forces

In the modal basis, the damping (II.4.6) and inertial (II.4.5) forces are respectively given by

fd = CΦq̇, f i = MΦq̈. (II.5.18)



34 CHAPTER II. BUFFETING ANALYSIS OF CIVIL STRUCTURES

For proportional damping, we have the following equality (Dickens et al., 1997)

CΦ = MΦD, (II.5.19)

and (II.5.7) can be rewritten as

xr = K−1 (−MΦq̈−MΦDq̇) = K−1 (−MΦ (q̈−Dq̇)) . (II.5.20)
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II.6 Gaussian spectral analysis

The spectral analysis (Papoulis, 1965; Grigoriu, 2013) helps to have a better understanding
of systems that behave randomly, e.g., identify the nature of the random processes and if
they are governed by a unique or several timescales (Denoël, 2015). This knowledge is pushed
forward with the concept of white noise approximation that provides convenient formulations
for the variance and covariance of modal amplitudes, as detailed in the sequel. Also, when
realizations are available and a series of processing has to be realized to the recorded data,
this can be practically done in the frequency-domain with the possibility to fit probabilistic
models (Blaise and Denoël, 2011a).

Sections II.6.1 and II.6.2 introduce the spectral analysis in a full nodal and modal bases,
respectively. Since none of these bases is really optimum (nodal basis is too large, modal basis
hardly captures quasi-static components), the quasi-static and dynamic spectral analyses are
developed in the nodal and modal bases, respectively, see Section II.6.3.

II.6.1 Nodal basis analysis

Applying the Fourier Transform to (II.4.1), the equations of motion in the nodal basis and
in the frequency domain are rewritten as

Gx̂ = f̂ , (II.6.1)

with x̂(ω) = F [x(t)], f̂(ω) = F [f(t)] and

G = −ω2M + ıωC + K. (II.6.2)

The inverse of the matrix G(ω) is the nodal transfer function H(ω)

H = G−1 =
(
−ω2M + ıωC + K

)−1
, (II.6.3)

and the nodal displacements are obtained with

x̂ = Hf̂ . (II.6.4)

The PSD matrix of nodal displacements reads

Sx = HSfH∗, (II.6.5)

where Sf is the PSD matrix of nodal forces.
The covariance matrices of nodal displacements, nodal velocities and nodal accelerations

are derived from

Σx =

ˆ
R

Sx dω , Σẋ =

ˆ
R
ω2Sxdω , Σẍ =

ˆ
R
ω4Sxdω. (II.6.6)

Background structural behavior

The PSD and covariance matrices of xb, see (II.4.7), read

Sxb

= K−1SfK−1 , Σxb

= K−1ΣfK−1, (II.6.7)

where Σf is the covariance matrix of nodal forces.
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II.6.2 Modal basis analysis

For large structures and in the context of a spectral analysis, all PSDs of structural responses
are usually not computed and especially not stored due to the computational cost. Instead,
the spectral moments, which are the important quantities for the design, are directly com-
puted. However, these spectral moments are obtained with integration of the PSDs. This is
a reason why the modal basis is usually preferred to the nodal basis to perform a spectral
analysis. For example in a modal basis, the potentially high-dimensional covariance matrix of
displacements is obtained with the low-dimensional covariance matrix of modal amplitudes
which requires the integration of a few number of PSDs of modal displacements.

Applying the Fourier Transform to (II.5.5), the equations of motion in the modal basis
and in the frequency domain read(

−ω2I + ıωD + Ω
)

q̂ = ĝ, (II.6.8)

with q̂(ω) = F [q(t)] and ĝ(ω) = F [g(t)]. Introducing the modal transfer function H(ω)

H =
(
−ω2I + ıωD + Ω

)−1
, (II.6.9)

the PSD matrix of the modal amplitudes Sq(ω) is expressed by

Sq = HSgH∗, (II.6.10)

with Sg = ΦTSfΦ, the PSD matrix of the generalized forces. Finally, the PSD matrix of
nodal displacements is found as

Sx = ΦSqΦT. (II.6.11)

The covariance matrices of modal displacements, modal velocities and modal accelerations
are derived from

Σq =

ˆ
R

Sq dω , Σq̇ =

ˆ
R
ω2Sqdω , Σq̈ =

ˆ
R
ω4Sqdω. (II.6.12)

The covariance matrices of nodal displacements, nodal velocities and nodal accelerations are
simply obtained with

Σx = ΦΣqΦT , Σẋ = ΦΣq̇ΦT , Σẍ = ΦΣq̈ΦT. (II.6.13)

Background structural behavior

The PSD matrices of qb (II.5.10) and xb (II.4.7) read

Sqb

= Ω−1SgΩ−1, (II.6.14)

Sxb

= ΦSqb

ΦT, (II.6.15)

and the covariance matrices of qb and xb may be obtained directly from the covariance
matrix of the nodal forces, as
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Σqb

= Ω−1ΦTΣfΦΩ−1, (II.6.16)

Σxb

= ΦΩ−1ΦTΣfΦΩ−1ΦT. (II.6.17)

It is recalled that the truncated modal basis is not well-suited to provide a reliable estimation
of the background contribution to the covariance matrix of nodal displacements.

II.6.3 Hybrid analysis

Usually, the background contribution to the covariance matrix of nodal displacements is not
well estimated in the modal basis. This contribution is usually computed in the nodal basis
with (II.6.7) and the residual contribution to the covariance matrix of nodal displacements

Σxre

= Σx

(II.6.13)
− Σxb

(II.6.17)
, (II.6.18)

is computed in the modal basis and where the superscript “re” stands for “residual”.

Residual modal analysis

By subtracting (II.6.14) from (II.6.10) and introducing a residual function as

Kmn(ω) = Hmm(ω)H∗nn(ω)− 1

ΩmmΩnn

, (II.6.19)

the residual contribution to the PSD of the m-th modal amplitude is given by

Sqre

mm(ω) = Sq
mm(ω)− Sqb

mm(ω) = Kmm(ω)Sg
mm(ω), (II.6.20)

with Kmm(ω) = |Hmm(ω)|2 − 1

Ω2
mm

from (II.6.19). Also, the residual contribution to the

cross-PSD of the m-th and n-th modal amplitudes is evaluated as

Sqre

mn(ω) = Sq
mn(ω)− Sqb

mn(ω) = Kmn(ω)Sg
mn(ω). (II.6.21)

The residual contribution to the covariance matrices of modal and nodal displacements are
derived from

Σqre

=

ˆ
R

Sqre

dω , Σxre

= ΦΣqre

ΦT. (II.6.22)
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Figure II.9 depicts both contributions, background and residual to a unilateral PSD of modal
amplitude.

0 !m!!m

!

Sq
mm(!)

0
!

Sqb

mm(!)

0
!

!m!!m

Sqre

mm(!)

Figure II.9: Typical example of a unilateral PSD of modal amplitude. The background and
residual contributions are also depicted.



II.6. GAUSSIAN SPECTRAL ANALYSIS 39

Contributions to the covariance matrix of modal displacements

With (II.5.10) and (II.5.9), the modal displacements can be seen as the addition of quasi-
static qb and resonant qr components, such as

q = qb + qr. (II.6.23)

Therefore, the variance of the i-th modal displacement, Σq
ii = σ2

qi
, reads

σ2
qi

= σ2
qb
i

+ σ2
qr
i
+ 2σqb

iq
r
i
, (II.6.24)

where σ2
qb
i

= E
[(

qb
i

)2
]

= Σqb

ii is the background contribution, σ2
qr
i

= E
[
(qr
i)

2] = Σqb

ii is

the resonant contribution and σqb
iq

r
i

= E
[
qb
i q

r
i

]
= Σqbqr

ii is the mixed background/resonant
contribution. Not only the diagonal, but the whole covariance matrix of modal displace-
ments is also split into background Σqb

, resonant Σqr

and mixed background/resonant Σqbqr

contributions, such as

Σq = Σqb

+ Σqr

+ Σqbqr

+ Σqrqb

, (II.6.25)

with Σqr

ij = σqr
iq

r
j

= E
[
qr
iq

r
j

]
, Σqbqr

ij = σqb
iq

r
j

= E
[
qb
i q

r
j

]
and Σqrqb

=
(
Σqbqr

)T
.

From (II.6.25), the residual contribution to the covariance matrix of modal displacements

Σqre

= Σq −Σqb

= Σqr

+ Σqbqr

+ Σqrqb

, (II.6.26)

collects the resonant and mixed background/resonant contributions.

Covariance matrices of nodal velocities and accelerations

The covariance matrices of nodal velocities Σẋ and nodal accelerations Σẍ are given by
(II.6.13) in the modal basis. For these quantities, there is no need for separating background
and residual contributions since the former one is usually negligible (Denoël, 2015) and thus
the modal analysis is suitable.
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II.7 Davenport’s white noise approximation, advanced

application and novel contribution

In a hybrid analysis, the integration of the residual contribution to the PSDs of modal dis-
placements, see (II.6.22), is rendered useless thanks to the white noise approximation. This
well-known approximation is used in many wind engineering applications and was intro-
duced by Davenport (1967). In its original work, the approximation is only developed for
the residual contribution to the variance of modal amplitudes. It took almost 40 years to
have an approximation developed for the residual contribution to the covariance of modal
amplitudes thanks to the works of Denoël (2009a). Independently, Gu and Zhou (2009)
proposed another formulation for the same purpose, which is not discussed here for sake of
brevity.

II.7.1 Timescale separation condition

A condition on the applicability of the white noise approximation concept is the timescale
separation, see Figure II.10. In wind engineering and for linear dynamical system, the
timescales associated with resonant components {T ?} are usually significantly different from
those of the background components {t?} which are related to those of the loading. In
other words, the energy of the loading is contained in a frequency band much lower than
the natural frequencies. This timescale separation allows us to postulate that the mixed
background/resonant contributions to the covariance matrix in (II.6.26) is negligible. Con-
sequently, the residual contribution to the covariance matrix of q reduces to the resonant
contribution.

Σqre ' Σqr

, (II.7.1)

which is evaluated thanks to the white noise approximation concept, as detailed next.

0 !m!!m

!

fT ?g fT ?gft?g

Sq
mm(!)

Figure II.10: Example of a unilateral PSD of modal amplitude. Figure inspired from (Denoël,
2015).
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II.7.2 Resonant contribution to the variance of modal amplitudes

In (II.6.20), the PSD of the m-th generalized force is replaced by a white noise

S(wn)
mm = Sg

mm (ωm) , (II.7.2)

which takes its value at the resonant frequency of the m-th mode (Davenport, 1964b, 1967).
In order to ensure integrability of (II.6.20) since Kmm(±∞) = −1/Ω2

mm, the resonant con-
tribution to the PSD of the m-th modal amplitude is then approximated with

Sqr

mm(ω) ' Kda
mm(ω)S(wn)

mm , (II.7.3)

with

Kda
mm(ω) = |Hmm(ω)|2 , (II.7.4)

the approximation of the residual function Kmn(ω) given in (Davenport, 1967). The resonant
contribution to the variance of the m-th modal amplitude, is expressed by

(
Σqr

mm

)(d) ' f (Re,d)
mm S(wn)

mm =
πωm
2ξm

S
(wn)
mm

Ω2
mm

, (II.7.5)

with

f (Re,d)
mm =

ˆ
R
Kda
mm(ω)dω =

πωm
2ξmΩ2

mm

. (II.7.6)

Figure II.11 shows the white noise approximation for the resonant contribution to the uni-
lateral PSD of modal amplitude. The approximation matches almost perfectly the residual
contribution Sqre

mm(ω). An additional condition on the applicability is that the magnitude of
the unilateral PSD of the generalized force Sg

mm(ω) does not change significantly over the
width of the resonant peaks in the modal transfer function.
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!m!!m

Sqre

mm(!)

Sqr
mm(!) ' Kda

mm(!)S
(wn)
mm

Figure II.11: Illustration of the white noise approximation for the resonant contribution to
the unilateral PSD of modal amplitude.
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II.7.3 Resonant contribution to the covariance of modal ampli-
tudes

The real part of the cross-PSD of the m-th and n-th generalized forces in (II.6.21) is replaced
by a white noise

S(Re,wn)
mn = Γ(Re,wn)

mn

√
Sg
mm (ωm) Sg

nn (ωn), (II.7.7)

with Γ
(Re,wn)
mn obtained as a mean of the real part of the coherence functions evaluated at the

natural circular frequencies of the m-th and n-th modes, such that

Γ(Re,wn)
mn =

Re [Γg
mn(ωm)] + Re [Γg

mn(ωn)]

2
. (II.7.8)

In order to ensure integrability of (II.6.21), the resonant contribution to the cross-PSD of
the m-th and n-th modal amplitudes is approached by

Sqr

mn(ω) ' Re
[
Kde
mn(ω)

]
S(Re,wn)
mn , (II.7.9)

with

Kde
mn(ω) = Hmm(ω)H∗nn(ω), (II.7.10)

the approximation of the residual function Kmm(ω) given in (Denoël, 2009a) and inspired
from the original approximation of Davenport (II.7.3). The dimensionless number ε ∈ [−1; 1]

ε =
ωn − ωm
ωn + ωm

, (II.7.11)

measures the relative distance between the two resonant frequencies. Figure II.12 and II.13
show the real and imaginary parts of Kmn(ω) and its approximation Kde

mn(ω) for three values
of ε corresponding to distinct peaks ε = 0.2, close peaks ε = 0.091, and almost merged peaks
ε = 0.0025. Two distinct damping ratios of 1% and 1.5% are used for the illustrations. For
both the real and imaginary parts, the approximation Kde

mn(η) matches almost perfectly the
residual function in the vicinity of the peaks, validating its adequacy.
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Figure II.12: Approximations of the real and imaginary parts of the residual function Kmn(ω)
for three values of ε = [0.2, 0.091, 0.0025].
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Figure II.13: Approximations of the real and imaginary parts of the residual function Kmn(ω)
for three values of ε = [0.2, 0.091, 0.0025]. (Closeup view of Figure II.12).

The resonant contribution to the covariance and correlation between the m-th and n-th
modal amplitudes are then obtained by integration. They respectively read
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(
Σqr

mn

)(Re,d)
=

π
√
ωmωn

2
√
ξmξn

S
(Re,wn)
mn

ΩmmΩnn

h(Re,d)
mn , (II.7.12)

ρ
(Re,d)
qr
mqr

n
= Γ(Re,wn)

mn h(Re,d)
mn , (II.7.13)

with

h(Re,d)
mn =

(ˆ
R

Re
[
Kde
mn(ω)

]
dω

)
/

(√
f

(Re,d)
mm f

(Re,d)
nn

)
,

=

(ˆ
R

Re
[
Kde
mn(ω)

]
dω

)
/

(
π
√
ωmωn

2
√
ξmξnΩmmΩnn

)
,

=
8(ωmωn)3/2(ξmωm + ξnωn)

√
ξmξn

(ω2
m − ω2

n)2 + 4ωmωn (ξmωm + ξnωn) (ξmωn + ξnωm)
. (II.7.14)

If ξm = ξn = ξ, (II.7.14) degenerates into

h(Re,d)
mn =

8(ωmωn)3/2ξ2(ωm + ωn)

(ω2
m − ω2

n)2 + 4ωmωnξ2 (ωm + ωn)2 . (II.7.15)

This approximation method is used in the first example of the Chapter illustrations, see
Section VI.2.

II.7.4 Advanced method for the resonant contribution of the co-
variance of modal amplitudes

Noticing that only the real part of the cross-PSD of the m-th and n-th generalized forces is
considered in the previous method, a method to handle the imaginary part as well is next
derived. Indeed, as illustrated in (Blaise and Denoël, 2011b), the imaginary part of the
coherence functions of generalized forces is not necessary negligible.

In a general case, the residual contribution to the cross-PSD of the m-th and n-th modal
amplitudes is evaluated as

Sqre

mn(ω) = Re [Kmn(ω)] Re [Sg
mn(ω)]− Im [Kmn(ω)] Im [Sg

mn(ω)] . (II.7.16)

With (II.7.16), the residual contribution to the covariance of the m-th and n-th modal
amplitudes is written as

Σqre

mn =
(
Σqre

mn

)(Re)
+
(
Σqre

mn

)(Im)
, (II.7.17)

with (
Σqre

mn

)(Re)
=

ˆ
R

Re [Kmn(ω)] Re [Sg
mn(ω)] dω,

and (
Σqre

mn

)(Im)
=

ˆ
R
−Im [Kmn(ω)] Im [Sg

mn(ω)] dω.

The real part of the cross-PSD of the m-th and n-th generalized forces in (II.7.16) is replaced
by (II.7.7) and the imaginary part is also replaced by a white noise
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S(Im,wn)
mn = Γ(Im,wn)

mn

√
Sg
mm (ωm) Sg

nn (ωn), (II.7.18)

where Γ
(Im,wn)
mn is obtained as a mean of the imaginary part of the coherence functions evalu-

ated at the natural circular frequencies of the m-th and n-th modes, such that

Γ(Im,wn)
mn =

Im [Γg
mn(ωm)] + Im [Γg

mn(ωn)]

2
. (II.7.19)

Thus the resonant contribution to the cross-PSD of the m-th and n-th modal amplitudes is
approximated by

Sqr

mn(ω) =

{
Re [Kmn(ω)] S

(Re,wn)
mn − Im [Kmn(ω)] S

(Im,wn)
mn , ∀ω > 0

Re [Kmn(ω)] S
(Re,wn)
mn + Im [Kmn(ω)] S

(Im,wn)
mn , ∀ω < 0

. (II.7.20)

Approximation of the residual function Kmn(ω) given in

In order to ensure integrability of (II.7.20), the approximation (II.7.10) is used such that

Sqr

mn(ω) '

{
Re
[
Kde
mn(ω)

]
S

(Re,wn)
mn − Im

[
Kde
mn(ω)

]
S

(Im,wn)
mn , ∀ω > 0

Re
[
Kde
mn(ω)

]
S

(Re,wn)
mn + Im

[
Kde
mn(ω)

]
S

(Im,wn)
mn , ∀ω < 0

. (II.7.21)

With (II.7.21), the resonant contribution to the covariance of the m-th and n-th modal
amplitudes is evaluated as (

Σqr

mn

)(d)
=
(
Σqr

mn

)(Re,d)
+
(
Σqr

mn

)(Im,d)
, (II.7.22)

where
(
Σqr

mn

)(Re,d)
is given by (II.7.12) and the“imaginary”contribution

(
Σqr

mn

)(Im,d)
is derived

from

(
Σqr

mn

)(Im,d)
= S(Im,wn)

mn

(ˆ
R−

Im
[
Kde
mn(ω)

]
dω −

ˆ
R+

Im
[
Kde
mn(ω)

]
dω

)
, (II.7.23)

= −2 S(Im,wn)
mn

ˆ
R+

Im
[
Kde
mn(ω)

]
dω, (II.7.24)

=
π
√
ωmωn

2
√
ξmξn

S
(Im,wn)
mn

ΩmmΩnn

h(Im,d)
mn , (II.7.25)

where the factor 2 in (II.7.24) appears since
´
R− Im

[
Kde
mn(ω)

]
dω = −

´
R+ Im

[
Kde
mn(ω)

]
dω

and we introduce

h(Im,d)
mn =

(
−2

ˆ
R+

Im
[
Kde
mn(ω)

]
dω

)
/

(
π
√
ωmωn

2
√
ξmξnΩmmΩnn

)
,

= −
√

1− ξ2
mωm [ω2

m + ωn (2ωmξmξn + ωn (2ξ2
m − 1))]

(ω2
m − ω2

n)2 + 4ωmωn (ξmωm + ξnωn) (ξmωn + ξnωm)

+

√
1− ξ2

nωn [ω2
n + ωm (2ωnξmξn + ωm (2ξ2

n − 1))]

(ω2
m − ω2

n)2 + 4ωmωn (ξmωm + ξnωn) (ξmωn + ξnωm)
. (II.7.26)
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If ξm = ξn = ξ, (II.7.26) degenerates into

h(Im,d)
mn =

√
1− ξ2 (ωn − ωm)

(ω2
m − ω2

n)2 + 4ωmωnξ2 (ωm + ωn)2 . (II.7.27)

By substituting (II.7.12) and (II.7.23) into (II.7.22), the resonant contribution to the covari-
ance of the m-th and n-th modal amplitudes is given by

(
Σqr

mn

)(d)
=
π
√
ωmωn

2
√
ξmξn

1

ΩmmΩnn

(
S(Re,wn)
mn h(Re,d)

mn + S(Im,wn)
mn h(Im,d)

mn

)
. (II.7.28)

The resonant contribution to the correlation of the m-th and n-th modal amplitudes is
approximated by

ρ
(d)
qr
mqr

n
= Γ(Re,wn)

mn h(Re,d)
mn + Γ(Im,wn)

mn h(Im,d)
mn , (II.7.29)

= ρ
(Re,d)
qr
mqr

n
+ ρ

(Im,d)
qr
mqr

n
, (II.7.30)

with ρ
(Re,d)
qr
mqr

n
= Γ

(Re,wn)
mn h

(Re,d)
mn and ρ

(Im,d)
qr
mqr

n
= Γ

(Im,wn)
mn h

(Im,d)
mn .

The weighting functions h
(Re,d)
mn and h

(Im,d)
mn for the real and imaginary parts of the coher-

ence functions are shown in Figure II.14 as a function of ε. The weighting function h
(Re,2)
mn is

monotonically decreasing with the relative distance between the natural frequencies and has
a maximum for ωm = ωn (ε = 0). As expected the weighting function h

(Im,d)
mn is null when

ωm = ωn since there is no phase shift between the modes, then increases to attain a maxi-
mum before a decreasing to zero. Before the maximum it may be noted that h

(Im,d)
mn < h

(Re,d)
mn

and then h
(Im,d)
mn > h

(Re,d)
mn . Also the condition on Rqr

mn ∈ [−1, 1] is fulfilled since it can be

noted that h
(Re,d)
mn + h

(Im,d)
mn 6 1.

This approximation method is used in the second example of the Chapter illustrations,
see Section VI.3.
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Figure II.14: Weighting functions for the real and imaginary parts of the coherence function
for four sets of modal damping coefficients with ξn = ξm, ξn = 2ξm and ξn = 4ξm.
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Correlation coefficient of modal amplitudes

Thanks to the previous developments, the approximation for the correlation coefficient of
modal amplitudes ρqmqn is established (Denoël, 2009a). They are evaluated as a weighted
combination of the correlation coefficient of generalized forces ρgmgn and resonant contribu-
tion to the correlation coefficient of modal amplitudes

ρ(d)
qmqn = γbmnρgmgn + γrmnρ

(d)
qr
mqr

n
, (II.7.31)

where ρ
(d)
qr
mqr

n
is given by (II.7.13) or (II.7.30) if the imaginary part of the coherence functions

is neglected or not, respectively.
The background γbmn and resonant γrmn weighting coefficients respectively defined as

γbmn =
1√

1 + b−1
m

√
1 + b−1

n

, γrmn =
1√

1 + bm
√

1 + bn
, (II.7.32)

where bm and bn are the background-to-resonant ratio in mode m and n, respectively defined
as

bm = Σqb

mm/Σ
qr

mm , bm = Σqb

mm/Σ
qr

mm. (II.7.33)

This formulation of correlation coefficient of modal amplitudes is used in the first two exam-
ples of the Chapter VI.

Higher spectral moments of modal amplitudes (Der Kiureghian, 1980)

The variances of the m-th modal velocity and modal accelerations are respectively expressed
by the resonant contribution

Σq̇
mm ' Σq̇r

mm ' ω2
mΣqr

mm , Σq̈
mm ' Σq̈r

mm ' ω4
mΣqr

mm. (II.7.34)

The covariance between the m-th and n-th modal velocities and modal accelerations are
respectively derived from the resonant contribution

Σq̇
mn ' Σq̇r

mn ' ωmωnΣqr

mn , Σq̈
mn ' Σq̈r

mn ' ω2
mω

2
nΣqr

mn, (II.7.35)

instead of the integrals given in (II.6.12). Also, (II.7.35) is used in Section IV.7.4 to assess
the magnitude of damping forces compared to inertial forces.
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II.8 Proper orthogonal decomposition

The proper orthogonal decomposition is a technique that expresses a set of correlated random
processes as a combination of orthogonal functions modulated by uncorrelated stochastic
processes (Papoulis, 1965; Lumley, 1967). This method is also termed the Karhunen-Loeve
expansion (Loeve, 1977) and belongs to Principal Component Analysis (PCA) (Jolliffe, 2005).

In wind engineering, data processing techniques based on the proper orthogonal decom-
position (POD) may be sorted into two families depending on the correlated random field on
which POD is applied: the oncoming wind velocities or the aerodynamic pressures acting on
the structure. In both cases, deterministic orthogonal shapes are extracted from the complex
time-space representation of a wind turbulence (resp.loading) field that may be obtained with
wind tunnel measurements, computational fluid dynamics or full-scale measurements. These
modes are sometimes termed wind blowing modes (Di Paola, 1998) or wind loading modes,
respectively. Each wind mode is amplified by its principal component, uncorrelated with the
others. Linear combinations of a limited number of wind modes reproduce accurately, in a
mean square sense, the entire wind (resp. loading) field in time and space.

Although partly driven by the drastic need to compress wind-tunnel data in 1960’s-1980’s
due to computer storage limitations, POD has been constantly used in order to provide a
sound understanding of the wind and aerodynamic pressure fields.

II.8.1 Wind field

First applications crystallized with the Covariance Proper Transformation (CPT) consisting
in the diagonalization of the zero-lag covariance matrix of the wind field. The CPT produces
wind modes that are only space-dependent with principal components uncorrelated only for a
zero-time lag. The Spectral Proper Transformation (SPT) consisting in the diagonalization
of the power spectral matrix of the wind field produces space-frequency dependent wind
modes and principal components that are uncorrelated for any time lag. Therefore, the
SPT provides a higher reconstruction rate of the original wind field than the CPT does.
Nevertheless, under some circumstances, CPT and SPT may produce similar wind modes
(Carassale, 2005) with a much heavier computational cost for SPT, though.

A short description of POD applied to the turbulence field is first discussed. Usually, the
turbulence field is modeled by a zero mean weakly stationary Gaussian 3-V (variate) (lon-
gitudinal, lateral and vertical turbulence components) and 4-D (dimensional) (three spatial
coordinates plus time) random process. In the frequency domain, the cross-power spec-
tral density functions describe the space-time characteristics. Several authors have proposed
models using POD for simulation of 1-V 4-D (Shinozuka et al., 1990; Di Paola, 1998; Di Paola
and Gullo, 2001), 1-V 2-D (Carassale and Solari, 2002) and 3-V 4-D (Solari and Tubino, 2002;
Tubino and Solari, 2005) wind velocity fields.

These simulation methods based on POD are typically well suited to line-like structures
such as buildings or bridges. Indeed, using well-known closed-form expressions of aerody-
namic admittances (Scanlan and Jones, 1999), aerodynamic pressures may be computed with
the simulated turbulence wind field. For instance, an aerodynamic admittance is given in
(Uematsu et al., 2008) for a circular flat roof. Also, Han and Li (2009) used the CPT to
reconstruct and interpolate wind velocities on a tensile cable-membrane large roof structure,
the Foshan Century Lotus Stadium (outside diameter of 300 m). Actually for wide-span
enclosures, the wide variety of shapes, the 3-D geometry of the structure, and the particular
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aerodynamic signature of such large structures, conspire to make the determination of a gen-
eral expression for the aerodynamic admittance quite challenging, if not vain. Consequently,
a proper recourse to the aerodynamic pressure field is preferred.

II.8.2 Aerodynamic pressure field

Application of the POD directly to the aerodynamic pressure field on a bluff body was first
investigated by Armitt (1968). Using the CPT truncation of wind-tunnel measurements,
Best and Holmes (1983) reduced the computational effort implementing their covariance
integration method for static analysis of low-rise buildings. For the same type of structures,
effects of integration of only a part of or all panel pressures for the CPT (Bienkiewicz et al.,
1993), possible simplifications of the CPT modes based on the influence functions (Ho et al.,
1995) and presence of internal pressures due to openings in the buildings (Holmes et al., 1997)
were investigated. This latter study compared the experimental CPT blowing modes with
those resulting from the modeling of the covariance matrix with a decreasing exponential and
identical variances on the diagonal (Van Trees, 1968; Spanos and Ghanem, 1989). Tamura
et al. (1999) clarified that the application of the CPT must be made on the fluctuating
aerodynamic pressure without the mean values which otherwise would introduce distortion
in the loading modes.

CPT loading modes

For later developments, the covariance proper transformation applied to the aerodynamic
pressure field is detailed. The CPT method consists in the diagonalization of the zero-lag
covariance matrix of the aerodynamic pressures Σp, that reads as a generalized eigenvalue
problem

ΣpP(C) = P(C)Σc, (II.8.1)

where Σc is a diagonal covariance matrix of principal components ordered by decreasing
variances and P(C) collects the CPT loading modes. The CPT produces wind modes that
are only space-dependent with principal components uncorrelated only for a zero-time lag.
Also, the set of loadings P(C) forms an orthonormal basis and the aerodynamic pressures are
expressed by

p(t) =

ncpt∑
m=1

P(C)
m am(t), (II.8.2)

with ncpt the number of CPT modes retained and am(t) the principal component of the m-th
CPT mode. Note that Σc

mm = E [a2
m(t)] = λcm gives a relative contribution of each mode on

the covariance matrix of aerodynamic pressures since we have

Σp = P(C)Σc
(
P(C))T . (II.8.3)

Numerous studies have shown that a small number of modes is adequate to capture the
whole aerodynamic pressure field, in a mean square sense.
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II.8.3 Structural analysis

Davenport (1995) and Bienkiewicz (1996) highlighted the importance of the POD tool in un-
derstanding wind loads in a generalized and simplified way. Wind-induced dynamic behavior
on single-layer latticed dome was investigated by Uematsu et al. (1997) using CPT loading
modes. Nine configurations of dome geometry with three different increasing rise-span ratios
were considered to model low-, middle- and high-rise domes, respectively. Physical interpre-
tations of the CPT loading modes are done using the quasi-steady theory (Letchford et al.,
1993) and analytical equations for the loading modes are proposed with expressions that
could be generalized to other dome shapes. The wind pressures acting on the structure for
the analysis were generated using proposed formulations of symmetric and anti-symmetric
loading modes. Combination coefficients are necessary to derive the loading modes and they
have been tuned for the specific experiment. The LRC method allows to compute ESWLs
and for the background contribution of several large roofs, Holmes and Wood (2001) sim-
plify the computation of the correlation coefficient between load and response using the
CPT. Rizzo et al. (2009) compute CPT wind modes on hyperbolic paraboloid shaped roofs
from wind tunnel measurements. For the Shenzhen Citizen Center, Liu et al. (2011) com-
pare aerodynamic pressures measured in full scale and those reconstructed with CPT modes
derived from recorded pressures in wind-tunnel.

Benfratello and Muscolino (1999) used the SPT method to perform the stochastic analysis
of an MDOF structure in order to evaluate the statistical moments with possible inclusion
of the quadratic terms in the aerodynamic forces. Solari and Carassale (2000) introduced
the Double Modal Transformation (DMT) method to analyze the structure in the modal
basis using loading modes obtained with CPT or SPT methods. The DMT method allows to
compute the dynamic response of each structural mode under each loading mode and finally,
the structural response is obtained, in an elegant way, with a double linear combination of
some pairs of structural and loading modes (Carassale et al., 2001). Although apparently
optimal, from a computational point of view, it appears to be efficient only if the mode
shapes and loading modes are known in closed form. Essentially, this concerns line-like
structures for which aerodynamic pressures may be directly obtained with a turbulence
field characterized by a simple analytical model. The DMT method has been applied to
tall buildings (Chen and Kareem, 2005), and long-span bridges (Tubino and Solari, 2007).
Concerning wide-span enclosure, Blaise and Denoël (2011b) discussed different structural
analysis methods, including the DMT, from wind-tunnel pressures on the stadium roof of Lille
(France). It is reported that the cross-modal participation matrix mixed between structural
and CPT loading modes is fully populated. Interesting orthogonality properties between
the structural and wind modes are thus hardly exploitable. Moreover, they suggest to fit
probabilistic models on the principal components of the SPT. This idea is appealing since
no coherence function has to be considered in that case; however the fitting of the space-
frequency dependent loading modes appears to be difficult to fit with a general analytical
model.

As a matter of fact, concerning applications of the POD as a tool for the analysis of
wide-span enclosures, few studies are reported. As mentioned by Chen et al. (2011), the en-
vironment and the shape of the wide-span roof play a determining role in the characterization
of the wind loads and every new wide-span roof requires specific studies.
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Chapter III

The envelope reconstruction problem

III.1 Introduction

III.2 Review of available methods

III.3 Proposed general methodology

III.4 Basic static wind loads

III.5 Combinations of basic static wind loads

III.6 Summary

� “The dynamic effects of gusts and vortex shedding are represented by equivalent static loads
producing the same maximum deflections and stresses.” Davenport (1967)

� “[...] if a single distribution is used for design it must be a conservative one for most
effects.” aaaaa Holmes (1988)

� “An approximation to the [...] load distribution that is independent of the [...] load effect
is given.” Holmes (1996)

� “For potential application in design practice, it is necessary to limit the number of
distributions to only critical response components [...]” Chen and Kareem (2001)

�“[...] by defining a global and unique loading condition able to furnish [...] a correct scenario
of all load effects.” Repetto and Solari (2004)

�“It would be useful to have a universal wind load distribution that simultaneously reproduces
largest load effects for all structural members [...]” Katsumura et al. (2007)
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III.1 Introduction

This Chapter poses the problem related to the main scope of this thesis: the envelope
reconstruction problem. It consists in deriving a relevant set of static wind loads providing
the actual envelope values of structural responses of interest. Two options to solve the
envelope reconstruction problem are identified.

Section III.2 reviews existing methods. Their limitations are pointed out and the objec-
tives of this Chapter are stated. Section III.3 rigorously conceptualizes a complete method-
ology to solve the envelope reconstruction problem. Section III.4 identifies a kind of static
wind loads, named basic, and provides the methodology to use them for the envelope recon-
struction problem. Instead of applying them successively without combination, Section III.5
describes a more elaborated approach based on some combinations of a subset of basic static
wind loads to speed-up the reconstruction of the envelope.

Envelope of structural responses (Section II.4.1)

Figure III.1 illustrates the mean component, envelope and total envelope of different kinds
of structural responses in a cantilever vertical structure, a four-span bridge and a frame in a
low-rise building.

Figure III.1: Conceptual examples of mean, envelope and total envelope (in orange) of
(a) along-wind displacements in a cantilever vertical structure, (b) bending moments under
aerodynamic lift forces in a four-span bridge and (c) bending moments in a frame (exploded
view) under aerodynamic pressures acting on the cladding of a low-rise building. Each
structure is represented in blue.

The envelope reconstruction problem

For decades, the concept of static wind analysis for design of civil structures has aroused
interest due to its valuable features. By essence, such a static analysis should produce
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structural responses similar to envelope values that would be provided by a buffeting analysis.
We will henceforth refer to the concept of structural analysis by means of static loads as the
envelope reconstruction problem. This problem consists in deriving a set ns of static wind
loads efficiently reconstructing the envelope values of structural responses everywhere in the
structure or at least for some structural responses of interest. Notice we only focus on the
reconstruction of the envelope. Indeed, the total envelope simply evaluated as the envelope
plus the mean component provided by the static analysis under the mean aerodynamic
loading, which is known.

The envelope reconstruction problem (ERP) focuses on the reconstruction of the envelope(
r(min), r(max)

)
,

with:

◦ Option 1, a basis of an ns−dimensional vector space of static wind loads

{f (s)
(1) , f

(s)
(2) , . . . , f

(s)
(ns)
},

◦ Option 2, only two static wind loads

{f (s)
(1) , f

(s)
(2)},

to be determined adequately. The superscript “s” stands for “static” (wind loads).

Iterative procedure (Option 1) The static analysis under the k-th static wind load f
(s)
(k)

produces a k-th vector of static structural responses

r
(s)
(k) = Lf

(s)
(k) . (III.1.1)

Considering the first k static wind loads, the k-th approximation of the envelope is expressed
by the recursive relations

r̃
(min)
(k) = min

(
r̃

(min)
(k−1); r

(s)
(k)

)
; r̃

(max)
(k) = max

(
r̃

(max)
(k−1); r

(s)
(k)

)
, (III.1.2)

where min(·) and max(·) are element-by-element operators and r̃
(min)
(0) and r̃

(max)
(0) are nr × 1

vectors filled with zeros (no static wind load has already been applied). The reconstructed
envelope after k iterations (

r̃
(min)
(k) , r̃

(max)
(k)

)
, (III.1.3)

is the result of a sequential reconstruction process, see Figure III.2 for an example.
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Figure III.2: Conceptual example: bending moments under aerodynamic lift forces in a
four-span bridge. Illustration of the iterative reconstruction of the envelope (in orange).
The diagrams are taken from Figure VI.15.

Finally, the total envelope
(
r′(min), r′(max)

)
is approximated by the reconstructed total

envelope after k iterations
(
r̃′

(min)
(k) , r̃′

(max)
(k)

)
using

r̃′
(min)
(k) = µr′ + r̃

(min)
(k) ; r̃′

(max)
(k) = µr′ + r̃

(max)
(k) , (III.1.4)

under total static wind loads given by

f ′
(s)
(k) = µf ′ + f

(s)
(k) . (III.1.5)

The number ns of static wind loads necessary to get a satisfactory approximation of the
envelope depends on several parameters detailed later.

Two static wind loads (Option 2) This option is a particular case of the first one where
ns = 2, i.e., the envelope is approximated with only two static wind loads. At first sight, this
option may appear attractive though it is really conceivable for a specific class of structures
and structural responses. However, most works, detailed in Section III.2, try to solve the
ERP with only two static wind loads.

III.2 Review of available methods

One common approach described in Section III.2.1 is to consider ESWLs associated with
some specific responses of major importance. Instead of using ESWLs, many studies derived
SWLs that are no longer associated with specific responses but aim at recovering several ones
at the same time. In general, the envelope reconstruction problem focuses on both sides of
the envelope since each side of the total envelope usually lead the design. In such cases,
the methods have to deal with a two-sided envelope reconstruction problem, as presented in
the introduction. However, for a specific set of structural responses, only one side of the
envelope may be required for the design. For such responses, the methods deals with a one-
sided envelope reconstruction problem and the option 2 reduces to the determination of a
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unique static wind load. In the sequel, the methods are classified if they aim at approximating
one side (Section III.2.2) or both sides (Section III.2.3) of the (total) envelope.

III.2.1 Equivalent static wind loads

For each specific response, application of the ESWL provides the associated extreme value.
At the early beginning, this approach has been used for the design of frames in low-rise
buildings. In (Kasperski, 1993), the static wind load aims at reproducing the base reactions
of such a kind of building. In addition to base reactions, the focus is also made in (Holmes,
1988; Holmes et al., 1995) on ESWLs targeting the knee and ridge bending moments for
fixed-based and pin-based frames, respectively. In (Holmes and Wood, 2001), hundreds of
ESWLs were computed for the design of very large roofs.

This approach is conceivable if the responses that should guide the structural design are
easy to identify. Otherwise, the manual selection of representative structural responses (left
to the structural engineers) may become tricky. As a consequence, the ESWLs associated
with a user-defined set of responses may not safely reproduce other responses in the entire
structure, eventually important for the design. This is particularly expected for complex
load-bearing systems and large structures. Unfortunately, to our knowledge, no general
methodology to adequately select ESWLs has been proposed.

III.2.2 One-sided envelope reconstruction problem

Option 2: Gust factor technique,...

Originally, Davenport (1967) defined a unique (ns=1) static wind load as a deterministic load
pattern reproducing with a static analysis several extreme dynamic structural responses. Its
first formulation was developed for the along-wind responses of cantilever vertical structures.
The total static wind load used for the design is expressed as the mean wind load amplified
by a single Gust Loading Factor (GLF)

f
′(s)
(1) = Gµf ′ ,

where this factor G incorporates the background and resonant behaviors of the structure
(Vickery, 1970; Simiu, 1973). In the original version, Davenport (1967) proposed a unique
static wind load since only one side of the total envelope may be of interest for the design
of vertical structures, see Figure III.1-(a). For example, if the envelope collects the —
positive-definite — along-wind displacements, a side of the envelope is larger in absolute
value: r′(max) >

∣∣r′(min)
∣∣ and only one side of the total envelope is relevant for the design and

has to be approximated

r̃′
(s)
(1) ≈ r′(max).

Initially, the concept was developed for the along-wind response of buildings that mainly
exhibit vibrations in their first mode (Holmes, 2007). In this case, the GLF is taken equal
to the Gust Response Factor (GRF) defined as the ratio of the extreme modal amplitude
in the first mode and its mean value (Vellozzi and Cohen, 1968). Seminal developments on
the formulation of such gust loading factors were reported in (Solari, 1993a,b; Holmes, 1994;
Simiu and Scanlan, 1996).
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The obvious simplicity of the formulation made it suitable for codification and most stan-
dards are based on this approach for the design of vertical structures under several assump-
tions (Eurocode, 1991b; Solari and Kareem, 1998; International Standards Organization,
2009; Zhou et al., 2002).

Option 1. ...its extensions,

Several studies pushed forward the original idea: Zhou et al. (1999) proposed to focus on the
base bending moment for the determination of the gust factor, Piccardo and Solari (2002)
and Kareem and Zhou (2003) extended it to more complicated (3D) loading models, Seo and
Caracoglia (2010) recourse to a database-assisted-design approach.

Application of the mean wind load amplification concept for rigid and elastic beams
supporting flat roof was done by Tamura et al. (1992) with wind tunnel tests. Empirical
GRFs are provided for displacements, bending moments and shear forces for several building
models with increasing span ratio and five wind models. Large-span (up to 200 m) elastic
beams mainly vibrate in their first mode shape which is more or less similar to the mean
displacement validating the applicability of the gust factor approach. For the same type of
bearing system of flat roof, Uematsu et al. (1997) derived empirical formulas for the ratio
of root-mean square and mean modal force coefficient in the first mode. These integrate
the influence of the height-span ratio, damping-height ratio and turbulence intensity. For
long span roofs behaving like elastic flat plates simply supported on four edges under wind
loading, Uematsu et al. (1996) gave empirical GLFs equal to the GRF of the first modal
amplitude. Uematsu et al. (1999) applied the same approach for circular flat roofs, modeled
as an elastic plate, with span up to 150 m under the same assumptions that the structure
mainly vibrates in its first mode.

Option 1. ...and limitations.

Actually, the gust factor technique can not be applied to zero-mean wind loadings and/or
responses. Typical examples are across-wind forces, due to vortex shedding, and zero-mean
modal amplitude for asymmetrical modal shapes as in roof structures. Zhou et al. (1999)
indicated that the original method gives reliable values for extreme deflections but not for
other components, e.g., bending moments and shear forces. In fact, the GRFs may exhibit
large sensitivity to the shape of influence functions (Tamura et al., 1992; Huang and Chen,
2007).

To sum up, the important inherent limitations are (i) the modal truncation to the first
mode, (ii) the need for a mode shape similar to the mean displacement of the structure, in
other words the static loading reproducing the mode shape has to be similar to the mean
loading and (iii) the range of structural responses essentially restricted to nodal displace-
ments. For the type of structures studied with the concept of GLF, a resonant response in
the first mode is not a priori necessary for the applicability of the method, i.e., the GLF
method may be applied in case of quasi-static structural behavior only. This makes use of
GRF and GLF rather difficult in a systematic way for any type of structure and structural
responses. For example, wide span enclosures are usually unique complex structures with
complex influence functions (with positive and negative parts) and responding in several
low-frequency modes for which other methods have to be investigated to produce reliable
SWLs.
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Option 2: Global loading technique

A global loading technique producing a unique (ns = 1) total SWL with the same objective
that several responses have to reach simultaneously their maximum total envelope values
has been derived in (Repetto and Solari, 2004). The technique is based on the fitting of
coefficients that multiply assumed forms of loadings (expressed as polynomial expansions) to
obtain the global loading. The number of coefficients corresponds to the number of structural
responses investigated and under the global loading, the side of the total envelope considered
for reconstruction is recovered

r̃′
(s)
(1) = r′(max).

Unfortunately, this method is only valid for vertical structures with a dynamic behavior in
the fundamental mode.

For bridges, Fiore and Monaco (2009) proposed a combination of SPT loading modes
using the global loading technique. In this study, a drawback remains the preselection of a
user-defined number of structural responses to tune the combination coefficients.

III.2.3 Two-sided envelope reconstruction problem

Option 2: Universal SWLs,...

Most recent works focus on combinations of the CPT loading modes P(C) to establish two
representative SWLs. In a quasi-static framework, the universal SWL introduced by Kat-
sumura et al. (2007) is a combination of CPT loading modes. The combination coefficients
are obtained as a least-square approximate solution through a pseudo-inverse.

Prior to this, a selection of envelope values, min or max for each structural response,
is required to establish the so-called universal SWL. Contrary to the two aforementioned
methods, a universal static wind load is thus not associated to a side of the envelope to be
approximated. At least, two universal SWLs are derived to approximate the two sides of the
total envelope (

r̃′
(min)
(2) , r̃′

(max)
(2)

)
≈
(
r′(min), r′(max)

)
.

Option 1. ...and limitations

Although the concept is appealing at first sight, the method is not straightforward. This
is mostly due to the selection of envelope values required to compute each universal static
wind load. In fact, this selection is based on engineering judgment and not on an automatic
procedure. Also, former studies (Chen and Zhou, 2007; Li et al., 2009; Kasperski, 2009;
Zhou et al., 2011; Li et al.) revealed several drawbacks of the universal SWL as erratic load
patterns without physical meaning, important deficient response estimations and suggest
some ways to improve its reliability. Recent applications of the universal SWL (Katsumura
et al., 2011; Tamura and Katsumura, 2012), however attempt to confirm its effectiveness and
applicability to a wide class of structures.



62 CHAPTER III. THE ENVELOPE RECONSTRUCTION PROBLEM

III.2.4 Limitations and objectives

To sum up, several limitations of the methods developed so far are worth being noticed, see
Table III.1. The methods are either associated with (i) specific structures or (ii) relevant
for a kind of structural behavior, quasi-static or dynamic. It is also our opinion that (iii)
handling the envelope reconstruction problem with option 2 is not well-suited. Indeed, it
is not natural to impose that a set of some structural responses reach their extreme values
under a unique static wind load. Actually, for responses that are mildly or even negatively
correlated, this unique loading may exhibit an erratic pattern since responses are forced to
reach their extreme values under the same load case.

Structures Structural
behavior

Process

ESWLs - Dynamic -
Gust loading factor Limited Dynamic -

Global loading technique Cantilever Dynamic Gaussian
Universal SWLs − Quasi-static -

Table III.1: Features of the methods applied for the envelope reconstruction problem.

Objectives

Addressing the aforementioned issues, this Chapter formalizes an alternative manner to
apprehend the envelope reconstruction problem. Instead of deriving a unique static wind
load targeting several structural responses simultaneously with varying success, the iterative
procedure presented as the first option for the envelope reconstruction problem is formally
detailed. This procedure consists in the successive application of static wind loads to accu-
rately approximate the envelope with a minimum range of discrepancy. It is relevant in both
Gaussian and non-Gaussian frameworks.

It is emphasized that our purpose is not the wind load codification, in the strict sense,
since the iterative procedure is a numerical approach that would provide specific SWLs for
each new envelope reconstruction problem. Despite this, the procedure to rank static wind
loads, in the format described hereinafter, is well-suited for codification. Anyhow, a gen-
eral procedure for any kinds of structure, its load-bearing system and dynamical structural
behavior and for non-Gaussian structural responses is sought.

As appealing as the concept could be, combinations of a set of SWLs is more efficient
than applying them separately. A reliable method for the establishment of combination
coefficients is required. Hence, an additional objective is the formalization of a constrained
nonlinear optimization, to derive combination coefficients in an automatic procedure. This
adaptive formulation is relevant to meet specific envelope reconstruction requirements.
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III.3 Proposed general methodology

As introduced above, a set of static wind loads has to be determined for design purposes in
order to accurately reproduce each side of the envelope.

The envelope reconstruction problem focuses on the reconstruction of the envelope(
r(min), r(max)

)
,

based on a particular basis of an ns−dimensional vector space of static wind loads

{f (s)
(1) , f

(s)
(2) , . . . , f

(s)
(ns)
}. (III.3.1)

Considering the first k static wind loads, the k-th approximation of the envelope is expressed
as (

r̃
(min)
(k) , r̃

(max)
(k)

)
.

Different strategies may be adopted to determine the minimum number ns of static wind
loads ensuring a reliable reconstruction of the envelope.

III.3.1 Underestimation of the envelope

The level of underestimation of each part of the envelope with its k-th approximation has to
be first assessed. In order to compute this discrepancy for each envelope value, we choose to
compute the relative errors rather than the absolute errors. The absolute errors are indeed
not suitable because envelope values may have large difference of order of magnitude between
them since different kinds of responses are collected in the envelope, e.g., displacements and
internal forces. The relative errors (m ≡ max or m ≡ min) are given by

ε
(m)
(k) =

(
r̃

(m)
(k) − r(m)

)
÷ r(m), (III.3.2)

where the symbol ÷ means the division is performed element by element. For ε
(m)
i,(k) =

−100%, −100% < ε
(m)
i,(k) < 0%, ε

(m)
i,(k) = 0% and ε

(m)
i,(k) > 0%, the i-th envelope value is not

approximated, underestimated, perfectly reconstructed or overestimated, respectively. The
largest relative error indicator, defined as

ε̌(k) = min
[
min

(
ε

(min)
(k)

)
; min

(
ε

(max)
(k)

)]
, (III.3.3)

is used for the acceptable underestimation condition described in Section III.3.4. Figure III.3
illustrates the relative errors and the largest relative error indicator with the second example
of Figure III.1. Figure III.6 depicts an example of the series ε̌(k).
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Figure III.3: Conceptual example: bending moments under aerodynamic lift forces in a
four-span bridge. Illustration of the relative errors of reconstruction of the envelope and the
largest relative error indicator. The diagrams are taken from Figures VI.15 and VI.16.

III.3.2 Reconstruction rate

Furthermore, we assess the envelope reconstruction accuracy for each side of the envelope by
computing the indicators

R(min)
(k) =

1

nr

nr∑
i=1

[
max

(
r̃
(min)
i,(k) , r

(min)
i

)]
/r

(min)
i , (III.3.4)

R(max)
(k) =

1

nr

nr∑
i=1

[
min

(
r̃
(max)
i,(k) , r

(max)
i

)]
/r

(max)
i , (III.3.5)

chosen here as the percentage of reconstruction for each side of the envelope in average. The

operations max
(

r̃
(min)
i,(k) , r

(min)
i

)
and min

(
r̃
(max)
i,(k) , r

(max)
i

)
in (III.3.4) and (III.3.5) ensure that

positive relative errors, i.e., overestimations of the envelope, are not taken into account in
these indicators. An overall reconstruction indicator for the envelope is expressed by

R(k) =
R(min)

(k) +R(max)
(k)

2
. (III.3.6)

Note R(k) is a monotonic series: 0% < R(k) 6 R(k+1) 6 100% with R(k) = 100% when the
entire envelope is perfectly reconstructed, see Figure III.5 for an example of the series. As
well, the inequality

R(k) > 1− ε̌(k), (III.3.7)

holds at each iteration.



III.3. PROPOSED GENERAL METHODOLOGY 65

III.3.3 Preponderant factors

The evolution of the largest relative error indicator ε̌(k) and the envelope reconstruction rate
R(k) are highly dependent on the considered problem. This is a statement that we try to
capture with the following four factors. It is also illustrated with the examples of Chapter
VI.

1. Correlation between responses

The correlation between the structural responses considered in the envelope is a preponderant
factor. Obviously, the more correlated the structural responses, the easier the reconstruction
of the envelope is. To assess the correlation between all structural responses, we define an
overall indicator of (absolute) correlation

ρr =
1

(n2
r − nr)/2

nr∑
i=1

nr∑
j=i+1

∣∣ρrirj

∣∣ ,
=

1

nr

nr∑
i=1

ρri , (III.3.8)

where ρri is the average of the (absolute) correlations between the structural response ri and
all other investigated responses defined as

ρri =
1

(nr − 1)

(
nr∑
j=1

∣∣ρrirj

∣∣− 1

)
. (III.3.9)

The overall correlation indicator lies between 0 and 1 for a set of responses without any
correlation or perfectly correlated with each other, respectively. In the latter case of perfect
correlation, only two static loads are necessary for a perfect reconstruction of the envelope,
one for each side of the envelope. The correlation between structural responses depends
on (i) the aerodynamic pressure field that develops on the structural envelope, mildly to
strongly correlated, (ii) the load bearing system and (iii) the structural behavior, quasi-
static, mostly resonant or in between (hybrid). In a modal analysis and neglecting a quasi-
static contribution, if the structure behaves in a unique mode, the correlation ρr is maximum
and equal to one. If several modes are activated, ρr is no longer maximum and decreases
depending on the magnitude of modal correlations. Same interpretation holds for structures
with quasi-static behaviors.

2. Number of structural responses

A second relevant factor is the number nr of structural responses considered in the envelope.
For a same overall correlation, more load cases are required as the number of structural
responses increases. This is particularly expected for low values of overall correlation and
should be rather limited for high values of overall correlation.

3. Gaussian or non-Gaussian framework

A third factor is the Gaussian or non-Gaussian properties of the structural responses. This
does not influence the correlation between responses but the envelope may be significantly
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modified and therefore the envelope reconstruction rate too. Clearly, the envelope recon-
struction for the min and max sides of the envelope are different in a non-Gaussian context.

4. Overestimations of the envelope

At last, a fourth factor is the level of acceptable overestimation of the envelope. From
our point of view, this discussion is crucial even if the level of overestimation is usually not
regarded. An expected property of the formulation is that the overestimation of the envelope
is controllable. The acceptable overestimation, noted ε̂, of the envelope is such that the static
responses r

(s)
(k) under the k-th SWL f

(s)
(k) , fulfills

(1 + ε̂) r
(min)
i 6 r

(s)
i(k) 6 (1 + ε̂) r

(max)
i ∀i ∈ [1, nr] , (III.3.10)

or in terms of relative errors

ε
(m)
i,(k) 6 ε̂ ∀i ∈ [1, nr] , (III.3.11)

see Figure III.4 for an example. By setting ε̂ = 0, there is no overestimation of the envelope
anywhere. In the proposed procedure, the level of acceptable overestimation is an important
parameter of the problem. Although it reduces the burden of the envelope’s reconstruc-
tion, an increase of the acceptable overestimation lessens the design’s performances. This
consideration needs to be put into perspective of the general design where other loads are
taken into account. In this way, the more the structural design is guided by the wind load
cases, the lower the acceptable overestimation should be. Finally, it could also depend on the
structural design phase, at the early stages of pre-design or at the final stages of structural
verification.

Figure III.4: Conceptual example: bending moments under aerodynamic lift forces in a
four-span bridge. Illustration of the acceptable overestimation of the envelope (in orange).
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III.3.4 Number of static wind loads for an overall reconstruction

The number ns of SWLs is formally obtained when the following two conditions are fulfilled:

1. Acceptable overall reconstruction

An acceptable overall reconstruction, noted Rt, is chosen such that the condition writes

R
(n

(1)
s )

> Rt, (III.3.12)

where n
(1)
s is the number of SWLs required to fulfill (III.3.12), see Figure III.5 for an example.

2. Acceptable underestimation of the envelope

An acceptable underestimation, noted ε̌t and regarded as reliable for all responses, is chosen
such that

ε
(min)

i,(n
(2)
s )

> ε̌t N ε
(max)

i,(n
(2)
s )

> ε̌t ∀i ∈ [1, nr] , (III.3.13)

where n
(2)
s is the number of SWLs required to fulfill (III.3.13). Alternatively, (III.3.13) is

rewritten with the largest relative error indicator defined in (III.3.3)

ε̌
(n

(2)
s )

> ε̌t, (III.3.14)

see Figure III.6 for an example.
The condition (III.3.7) also holds for the acceptable overall reconstruction and underes-

timation

Rt > 1− ε̌t, (III.3.15)

and Rt = 100% with ε̌t = 0%.

Optimization of the basis of static wind loads

To sum up, the number ns is obtained by

ns = max(n(1)
s ;n(2)

s ), (III.3.16)

with n
(1)
s and n

(2)
s the numbers of SWLs required to fulfill the overall reconstruction Rt

and the acceptable underestimation of the envelope ε̌t, respectively. From our point of
view, the two conditions are essentials since we could have a good overall reconstruction
indicator with however large relative errors. With (III.3.15), the number of SWLs required
to fulfill the overall reconstruction is always lower than the number to fulfill the acceptable
underestimation of the envelope

n(1)
s 6 n(2)

s . (III.3.17)

The more the basis of static wind loads provides a number of SWLs n
(2)
s close to n

(1)
s , the

more it is well-suited for the envelope reconstruction problem. In others words, the basis of
SWLs must provide a good overall reconstruction for each envelope value.
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Figure III.5: Example of the evolution of the overall reconstruction indicator R(k) as a
function of the number of load cases with Rt = 95%. The diagram is taken from Figure
VI.17.
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Figure III.6: Example of the evolution of the largest relative error indicator ε̌(k) as a function
of the number of load cases with ε̌t = −10%. The diagram is taken from Figure VI.18.

III.3.5 Number of static wind loads ensuring no underestimation
of the envelope

For given acceptable underestimation ε̌t and overestimation ε̂ parameters, the particular
basis of ns static wind loads

{f (s)
(1) , f

(s)
(2) , . . . , f

(s)
(ns)
}, (III.3.18)

is established to meet the requirements of the ERP. Conservatively, it could be required that
all responses have reached, at least, their envelope values, i.e., there is no underestimation
of the envelope. To do so, the SWLs of (III.3.18) are multiplied by an amplification factor

α(c) =
1

1 + ε̌(ns)

, (III.3.19)

to obtain the SWLs {f (c)
(1) , f

(c)
(2) , . . . , f

(c)
(ns)
} ensuring no underestimation of the envelope

{f (c)
(1) , f

(c)
(2) , . . . , f

(c)
(ns)
} = α(c){f (s)

(1) , f
(s)
(2) , . . . , f

(s)
(ns)
}. (III.3.20)
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As a result, the maximum overestimation is changed from ε̂ to

ε̂′ =
1 + ε̂

1 + ε̌(ns)

− 1, (III.3.21)

the “final” overestimation obtained with the scaled SWL basis (III.3.20). It is thus clear that
the solution of the ERP with ε̌t and ε̂ is also a solution of the problem with no underesti-
mation and ε̂′. The solutions of the two problems are however not identical since the ERP
is solved with a nonlinear solver that may find optimized solutions in different zones of the
parameter space. Three options are thus discussed, and later compared in the illustrations.

Option A. The ERP is simply solved with ε̌t = 0 and ε̂ = ε̂′. With this option, the basis
of SWLs (III.3.18) is the one ensuring no underestimation and the amplification factor is
equal to one.

Option B. The ERP is solved without overestimation, i.e., ε̂ = 0, and with underestima-
tion

ε̌t =
1

1 + ε̂′
− 1. (III.3.22)

Option C. The ERP is solved with overestimation and underestimation such that

ε̌t = −ε̂ =
ε̂′

(2 + ε̂′)
. (III.3.23)

Amplification factor

Table III.2 gives the numerical values for the parameters ε̌t, ε̂ and α(c) associated with the
three options for two values of the final overestimation ε̂′ = 25% and ε̂′ = 10%.

ε̂′ = 25% ε̂′ = 10%
Options: A B C A B C

ε̌t 0% -20% -11% 0% -9.1% -4.76%
ε̂ 25% 0% 11% 10% 0% 4.76%

α(c) 1 1.20 1.10 1 1.10 1.05

Table III.2: Numerical values for the parameters ε̌t, ε̂ and α(c) associated with ε̂′ = 25% and
ε̂′ = 10%.

Several considerations are given to guide the choice of the final overestimation ε̂′.

◦ Firstly, the relative importance of the wind load case (associated with the fluctuating
component of the wind) in comparison with the mean load case. Indeed, the final over-
estimation applies only to the fluctuating component of the responses. Proportionally,
the larger the mean load, the lower the overestimation on the total envelope values
(II.4.19).

◦ Secondly, the relative importance of the total wind load case in comparison with other
permanent load cases, e.g., self-weight and variable load cases, e.g., snow.
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◦ Thirdly, in the design process, the required cross-sections or required resistance of the
materials can usually not be exactly selected due to technological limitations (selection
in a catalogue and limitation of the number of different sections in a single project).
It implies that the elements and the properties of the materials with which they are
built in are more or less over-resistant.

III.4 Basic static wind loads

We define a set of basic static wind loads as wind loads that are (i) not associated with
specific structural responses, (ii) defined up to a multiplicative constant and (iii) naturally
ordered by decreasing importance in an nt × nb matrix F(b). The superscript “b” stands for
“basic” (static wind loads). The CPT loading modes, modal inertial loads and principal static
wind loads are three examples of basic SWLs. Obviously, ESWLs can not be categorized as
basic ones.

Structural responses produced by these static wind loads are collected in an nr × nb
matrix given by

R(b) = LF(b). (III.4.1)

III.4.1 Normalization

These SWLs require normalization before the envelope reconstruction. Two normalized
SWLs are defined for each of these SWL by

F
(b,1)
k = α

(b,1)
(k) F

(b)
k , F

(b,2)
k = α

(b,2)
(k)

(
−F

(b)
k

)
, (III.4.2)

where α
(b,1)
(k) and α

(b,2)
(k) are two positive coefficients applied to satisfy the acceptable overes-

timation of the envelope (III.3.10) and the tangency condition (Blaise and Denoël, 2013a).

The tangency condition is such that the static responses R
(b,1)
k and R

(b,2)
k under the k-th

normalized SWLs F
(b,1)
k and F

(b,2)
k , defined as

R
(b,1)
k = LF

(b,1)
k , R

(b,2)
k = LF

(b,2)
k , (III.4.3)

are somewhere tangent to the envelope amplified by the acceptable overestimation ε̂. Math-
ematically, we may write the tangency condition as

∀k, (∃ j ∈ [1, nr] : R
(b,1)
jk = (1 + ε̂)r

(max)
j or R

(b,1)
jk = (1 + ε̂)r

(min)
j ), (III.4.4)

with the acceptable overestimation of the envelope expressed by

(1 + ε̂)r
(min)
j 6 R

(b,1)
jk 6 (1 + ε̂)r

(max)
j ∀j ∈ [1, nr] . (III.4.5)

The same definition holds for R
(b,2)
k . Note that in a Gaussian framework, the envelope is

symmetric: α
(b,1)
k = α

(b,2)
k and F

(b,1)
k = −F

(b,2)
k .
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III.4.2 Envelope reconstruction

Since the basic SWLs are ordered by decreasing importance, a straightforward approach is

to successively apply them. The sequential approximation
(
r̃

(min)
(k) , r̃

(max)
(k)

)
of the envelope(

r(min), r(max)
)

after considering the first k normalized basic static wind loads is expressed by
the recursive relations for k odd

r̃
(min)
(k) = min

(
r̃

(min)
(k−1); R

(b,1)
k+1
2

)
; r̃

(max)
(k) = max

(
r̃

(max)
(k−1); R

(b,1)
k+1
2

)
;

r̃
(min)
(k+1) = min

(
r̃

(min)
(k) ; R

(b,2)
k+1
2

)
; r̃

(max)
(k+1) = max

(
r̃

(max)
(k) ; R

(b,2)
k+1
2

)
,

(III.4.6)

with r̃
(m)
(0) = 0.

It is worth noticing that this approach leads to an approximation of the actual envelope(
r̃

(min)
(nb)

, r̃
(max)
(nb)

)
≈
(
r(min), r(max)

)
, (III.4.7)

even by considering the maximum number of basic SWLs that could be derived in a general
case, i.e., nb = nl with b ≡ C (CPT loading modes, see (II.8.1)), nb = nm with b ≡M (Modal
inertial loads, see (II.5.11)) and nb = 2nr with b ≡ P (Principal static wind loads, see Chapter
V). However, this simple approach is already able to provide a significant reconstruction rate,
as a first insight of the envelope reconstruction. Figure III.7 depicts the flowchart of the ERP
with basic SWLs that are applied successively. If a too large acceptable overestimation or
number of static wind loads is required to fulfill the two conditions (III.3.12)-(III.3.13),
combinations of static wind loads, described in Section III.5, have to be considered.

Gaussian framework The nb−dimensional vector space of basic static wind loads has an
important feature if structural responses are Gaussian processes. For k odd, the k-th and
(k + 1)-th SWLs are identical in distribution and just differ by their sign

f
(s)
(k) = F

(b,1)
k+1
2

, (III.4.8)

f
(s)
(k+1) = −f

(s)
(k) . (III.4.9)

This result holds because of the symmetry of the envelope and each side of the envelope has
the same approximation for k even, mathematically it reads

r̃
(min)
(k) = −r̃

(max)
(k) . (III.4.10)
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Figure III.7: Flowchart of the envelope reconstruction problem. Basic SWLs are applied
successively without combination.
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III.5 Combinations of basic static wind loads

A more elaborated approach is based on some combinations of a subset of basic SWLs to
produce the sequence of static wind loads in the ERP. Mathematically, the way to establish
the particular basis

{f (s)
(1) , f

(s)
(2) , . . . , f

(s)
(ns)
}, (III.5.1)

is to consider combinations in another nq−dimensional basis

{F(b)
1 ,F

(b)
2 , . . . ,F(b)

nq }, (III.5.2)

which collects the first nq basic static wind loads. Combining basic SWLs performs better
for the envelope reconstruction than applying successively each normalized ones separately.
For these reasons, only the first few nq basic SWLs are retained and combinations of them
are considered instead

f
(s)
(k) = [F

(b)
1 ,F

(b)
2 , . . . ,F(b)

nq ]q
(b)
(k), (III.5.3)

with q
(b)
(k) an nq × 1 vector of combination coefficients and f

(s)
(k) an nt × 1 vector representing

a static wind load obtained by combinations of the first nq basic SWLs. The combination

coefficients in q
(b)
(k) are such that the static responses

r
(s)
(k) = Lf

(s)
(k) , (III.5.4)

associated with the combinations of basic SWLs satisfy the level of acceptable overestimation
and the tangency condition. The envelope reconstruction problem requires combinations of

a sufficient number of basic SWLs such that the reconstructed envelope
(
r̃

(min)
(k) , r̃

(max)
(k)

)
of

the structural responses be close enough to the actual envelope. At each step, the combi-
nation that will appropriately fill the gaps between the actual envelope and the envelope
reconstructed with the former iterations is sought.

III.5.1 Constrained nonlinear optimization problem

In this document, we choose a cost function f of the envelope
(
r(min), r(max)

)
and its current

approximation
(
r̃

(min)
(k) , r̃

(max)
(k)

)
, that reads

f
((

r̃
(min)
(k) , r̃

(max)
(k)

)
,
(
r(min), r(max)

))
:=
∣∣∣Ψ(γ)

(k)

∣∣∣ , (III.5.5)

which aims at the minimization, at each iteration, of the overall error indicator Ψ
(γ)
(k). This

indicator is given by

Ψ
(γ)
(k) =

Ψ
(min,γ)
(k) + Ψ

(max,γ)
(k)

2
, (III.5.6)

with

Ψ
(min,γ)
(k) =

1

nr

nr∑
i=1

−
∣∣∣[max

(
r̃
(min)
i,(k) , r

(min)
i

)
− r

(min)
i

]
/r

(min)
i

∣∣∣γ , (III.5.7)

Ψ
(max,γ)
(k) =

1

nr

nr∑
i=1

−
∣∣∣[min

(
r̃
(max)
i,(k) , r

(max)
i

)
− r

(max)
i

]
/r

(max)
i

∣∣∣γ , (III.5.8)
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where γ > 1 is a parameter that gives more weight to large relative errors in the cost
function. For an easier understanding of the cost function we first set ε̂ = 0 and γ = 1, i.e.,
no overestimation of the envelope is accepted and each relative error has the same weight in
the cost function, respectively. In this case, equations (III.5.7) and (III.5.8) degenerate into

Ψ
(min,1)
(k) =

1

nr

nr∑
i=1

ε
(min)
i,(k) , (III.5.9)

Ψ
(max,1)
(k) =

1

nr

nr∑
i=1

ε
(max)
i,(k) , (III.5.10)

and Ψ
(min,1)
(k) and Ψ

(max,1)
(k) correspond to the average of the relative errors for the min and max

sides of the envelope, respectively. Moreover, we have R(m)
(k) = 1 + Ψ

(m,1)
(k) and R(k) = 1 + Ψ

(1)
(k).

The operations max
(

r̃
(min)
i,(k) , r

(min)
i

)
and min

(
r̃
(max)
i,(k) , r

(max)
i

)
in (III.5.7) and (III.5.8) ensure

positive relative errors, i.e., overestimations of the envelope, are not taken into account in
the cost function. The negative sign is due to the absolute value required for even γ. Note
Ψ

(γ)
(k) is a monotonic series: −100% < Ψ

(γ)
(k) 6 Ψ

(γ)
(k+1) 6 0% and the bounded value Ψ

(γ)
(k) = 0%

means that the envelope is perfectly reconstructed.
We recommend to set the parameter γ equal to one as an educated initial value. After

solving the envelope reconstruction problem, if the number n
(2)
s of SWLs required to fulfill

the acceptable underestimation of the envelope ε̌t is much larger than the number n
(1)
s to

achieve the overall reconstruction Rt, then it makes sense to increase the parameter γ.
Figure III.8 depicts the flowchart with combinations of basic SWLs to solve the envelope

reconstruction problem. At the k-th iteration, the convergence (step 6), i.e., fulfillment of
(III.3.12) and (III.3.13) is checked. If one or both conditions are not satisfied, the behaviors
of the seriesR(k) and ε̌(k) are assessed before the next iteration (step 7). If they do not change
through iterations, it means they may have reached asymptotic values. What we define as
asymptotic values denoted by R(∞) and ε̌(∞) are associated with the approximation of the

envelope considering all possible combinations q
(b)
(k) generated with a Monte Carlo simulation

technique (Blaise and Denoël, 2013a).
Practically, both asymptotic quantities are not computed since it is time-consuming.

Instead, if the rate of change of R(k) and ε̌(k) through iterations is below a certain threshold,
for instance 1%, and R(k) � Rt or ε̌(k) � ε̌t, it is recommended to increase the number nq
or the acceptable level of overestimation. Contrary to the series R(k), the series ε̌(k) may
exhibit one or several plateau’s and the assessment of its rate of change is therefore not
straightforward, see Figure III.6 for an example.
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Figure III.8: Flowchart of the envelope reconstruction problem. Combinations of Basic SWLs
are considered.
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III.5.2 Combination coefficients

The constrained nonlinear optimization consists in finding a vector of combination coefficients
q

(b)
(k) associated with a local minimum to the scalar cost function (III.5.5)

min
q
(b)
(k)

∣∣∣Ψ(γ)
(k)

∣∣∣ , (III.5.11)

under the linear constraints of the acceptable overestimation conditions{
+L[F

(b)
1 ,F

(b)
2 , . . . ,F

(b)
nq ]q

(b)
(k) − (1 + ε̂)r(max) 6 0,

−L[F
(b)
1 ,F

(b)
2 , . . . ,F

(b)
nq ]q

(b)
(k) + (1 + ε̂)r(min) 6 0.

(III.5.12)

With (III.5.11) the same relative errors for two structural responses have the same weight
in the cost function no matter the magnitude of each structural response. If structural
responses are stresses, one may be more interested on the accurate reconstruction of the
highest stresses than the lower ones. For this purpose, a weighting function integrating the
magnitude of structural responses may be incorporated in the cost function. Moreover, only
the min or max side of the envelope may be of interest depending on the magnitude of the
mean structural responses under the mean wind loading and other loads, e.g., self-weight.
Other cost functions may be chosen as well, depending on the specificity of the problem.

Following the optimization, the reconstructed envelope is updated using (III.5.3)-(III.5.4)-
(III.1.2) and we proceed to the next iteration. We recommend the Sequential Quadratic
Programming method (Boggs and Tolle, 1995) for this constrained nonlinear optimization
problem.

The cost function to be minimized possesses many local minima, in the space of the
combination coefficients, which makes the optimization algorithm sensitive to the initial set
of combination coefficients q0

(b)
(k). Two procedures to guess a good initial set of combination

coefficients q0
(b)
(k) before minimization of the cost function are described. This is further

discussed in the illustrations.

Initial set of combination coefficients (small nq)

◦ Each retained basic SWL for combinations is multiplied by the normalization coeffi-

cients, see (III.4.2), chosen in the triplet
{
−α(b,2)

(i) , 0, α
(b,1)
(i)

}
.

◦ All possible combinations of normalization coefficients of basic SWL are considered.
Discarding the trivial combination, for nq basic SWLs, the number of possible com-
binations amounts to 3nq − 1. For instance, for nq = 2 basic SWLs, the 8 sets of
combination coefficients are given by each column of the matrix below[

−α(b,2)
(1) −α(b,2)

(1) −α(b,2)
(1) 0 0 α

(b,1)
(1) α

(b,1)
(1) α

(b,1)
(1)

−α(b,2)
(2) 0 α

(b,1)
(2) −α(b,2)

(2) α
(b,1)
(2) −α(b,2)

(2) 0 α
(b,1)
(2)

]
.

◦ Finally, each set of combination coefficients (each column above) is scaled by a scalar
to fulfill again the level of acceptable overestimation and the tangency condition. The
cost function is evaluated for each set of combination coefficients and the set providing
the minimum cost function is selected as the initial value q0

(b)
(k) for the optimization

(III.5.11).
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In practice, if the CPU time to evaluate the cost function (III.5.11) for one set of initial
combination coefficients is denoted by tc, the total CPU time to determine the initial set
q0

(b)
(k) from 3nq − 1 initial combination coefficients is equal to tc× (3nq − 1). Hence, the total

CPU time to choose the initial set is proportional to three to the power nq. If this CPU time
is prohibitive, another procedure is described next in case of large nq.

Initial set of combination coefficients (large nq)

In case of large nq, the procedure described above might be time consuming and is better
suited to small nq. For large nq, we recommend instead to randomly generate nc sets of
combination coefficients as described next.

◦ For each retained basic SWL, nc coefficients uniformly distributed between −α(b,2)
(i) and

α
(b,1)
(i) are randomly generated and denoted by α

(rg)
(i) .

◦ For instance, for nq = 40 basic SWLs and nc = 10000, the 10000 sets of combination
coefficients are given by each column of the matrix below α

(rg)
(1) · · · α

(rg)
(1)

...
. . .

...

α
(rg)
(40) · · · α

(rg)
(40)


40×10000

.

◦ Finally, each set of combination coefficients (each column above) is scaled by a scalar
to fulfill again the level of acceptable overestimation and the tangency condition. The
cost function is evaluated for each set of combination coefficients and the set providing
the minimum cost function is selected as the initial value q0

(b)
(k) for the optimization

(III.5.11).

Gaussian framework

The ns−dimensional vector space of static wind loads (III.3.1) has an important feature if
structural responses are Gaussian processes. For k odd, the k-th and (k + 1)-th static wind
loads are identical in distribution and just differ by their sign

f
(s)
(k) = −f

(s)
(k+1). (III.5.13)

This result holds because of the symmetry of the envelope and if the reconstruction of each
side of the envelope has the same weight in the cost function.

III.6 Summary

A complete methodology to solve the envelope reconstruction problem irrespective of the
structure, its load-bearing system and its susceptibility to vibrations in a Gaussian or non-
Gaussian context is rigorously conceptualized. The intrinsic controllability of a set of perti-
nent parameters makes the methodology flexible to specific envelope reconstruction require-
ments. In other words, it provides a smart balance between over- and under-estimation of
the actual envelope and three options are also discussed to obtain static wind loads ensuring
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no underestimation of the envelope. Moreover, combinations of basic static wind loads are
computed to speed-up the reconstruction of the envelope values. The problem of determining
these combination coefficients is formulated as a constrained nonlinear optimization. The
covariance proper transformation loading modes, modal inertial loads and principal static
wind loads, categorized as basic static wind loads, can be implemented within the proposed
methodology.
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Chapter IV

Equivalent static wind loads

IV.1 Introduction

IV.2 Concept

IV.3 Conditional sampling technique

IV.4 Load-Response Correlation method

IV.5 Modal inertial loads-based ESWLs

IV.6 Hybrid-based ESWLs

IV.7 Conditional Expected Load method

IV.8 Non-Gaussian joint probability density function

IV.9 Two-step adjustment method

IV.10 Envelope reconstruction problem using ESWLs

IV.11 Summary

� “The instantaneous load distributions producing the peak load effects were recorded, using
a conditional sampling technique.” Holmes (1988)

� “Assuming Gaussian properties, the load pattern obtained [...] is the most probable extreme
load pattern for the specified maximum response.” Kasperski (1992)

� “This approach also allows the peak-load distributions [...] to be reduced to linear combina-
tions [...] of eigenvector modes.” Holmes (1992)

� “The equivalent desgin pressure coefficients which reproduce the maximum load effects are
proposed [...]” Tamura et al. (1992)

� “[...] the equivalent static load distribution [...] is formulated in terms of either a weighted
combination of modal inertial load components, or the background and resonant load compo-
nents.” Chen and Kareem (2001)

� “The load distribution for a given peak response is not necessarily unique simply because
that multiple load distributions can result in an identical response.” Chen and Zhou (2007)

81
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IV.1 Introduction

An Equivalent Static Wind Load (ESWL) is a loading such that its application provides the
same extreme value of a given structural response as what would result from the buffeting
analysis. Their usual designation is equivalent static wind loads although they are sometimes
referred as “peak wind loads” (Holmes, 1988), “extreme load distributions” or “unfavorable
wind load distributions” (Kasperski and Niemann, 1992), “effective static load distributions”
(Holmes, 1996) and “equivalent static buffeting loads” (Zhou et al., 2000), to name but a
few. In this document, the former designation is adopted.

The static wind loads obtained with the GLF and GRF concepts may be assimilated as
equivalent one. They are not presented here since they have been discussed in the previous
Chapter where it was decided to disregard them in this thesis.

The main methods formulating ESWLs are next reviewed.

Conditional Sampling Technique (CST-based ESWLs)

An approach for the formulation of ESWL arose with the studies on the wind loading of low-
rise buildings (Holmes and Best, 1981; Stathopoulos, 1984). In Holmes (1988) the notion
of peak-load pressure distributions is introduced for specific structural responses referred to
as “load effects” in his works. To each structural response corresponds plausible patterns
of pressure distributions that maximize or minimize it in the manner of an influence line
or influence surface, in a static analysis. The conditional sampling technique (Atta, 1974)
identifies these peak-load pressure distributions. This technique has been mainly applied to
low-rise buildings (Tamura et al., 1992, 2001).

Load-Response Correlation method and CPT loading modes (LRC-based ESWLs)

An important breakthrough was achieved with works of Kasperski (1992) who derived a
mathematical formulation defining an ESWL as the “most probable wind load pattern as-
sociated with an extreme value of a specific response”. The assumption is a Gaussian wind
field and the proposed method termed the Load-Response Correlation (LRC) method is lim-
ited to structures with a background structural behavior (Kasperski and Niemann, 1992).
More precisely, the LRC method gives a load pattern producing an extreme value (min or
max) of the (zero-mean) fluctuating response. This work also emphasizes that the total wind
load has to incorporate the mean wind loading separately. The LRC method has the main
advantage to provide meaningful realistic load for any considered response in the structure.
For cantilevered grandstand roofs, improvements of the design load patterns provided in
the Australian code were compared with those obtained with the LRC method (Letchford
and Killen, 2002). Actually, the LRC method has been incorporated in the ISO-document
(International Standards Organization, 2009) for the design of low-rise buildings (Kasperski,
2009). Finally, it appears that LRC-based ESWLs may be seen as combinations of a small
number of the CPT loading modes (Holmes, 1992).

Methods for dynamic structural behaviors using LRC-based ESWLs and Modal
Inertial Loads (Hybrid-based ESWLs)

Even if not formulated as such, Davenport (1985) sketched the use of Modal Inertial Loads
(MILs) to derive static wind loads for the dynamic analysis of long-span bridges. A modal
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inertial load statically applied to the structure produces a deflection affine to the correspond-
ing mode shape. In the general case of a hybrid background-resonant structural behavior,
Holmes (1996) formulated the ESWL as an addition to the mean pressure field of an SRSS
combination of the (background) load pattern obtained with the LRC method and a reso-
nant load pattern resulting from the first modal inertial force. This formulation was initially
derived for structures that exhibit a dynamic behavior only in their first mode. The design
of the Stadium Australia and the Sydney SuperDome was based on this method (Holmes and
Wood, 2001). For the background component of the ESWL, comparisons are made between a
direct approach in which instantaneous pressures producing extreme responses are picked up
and those obtained with the LRC method. The authors advised to use the second approach
because it produces, from a statistical point of view, more reliable load patterns than those
obtained with a single snapshot. The formulation was pushed forward by Zhou et al. (2000)
using several MILs for horizontal structures that may exhibit resonant responses in several
modes but neglecting modal response correlations. Note, the number of MIL is equal to
the number of modes with a resonant response included in the modal analysis. Other ways
to combine the different contributions (mean, background and resonant) of an ESWL is a
weighted addition of each part. This is discussed in (Chen and Kareem, 2001) with extension
to modal response correlations and these hybrid-based ESWLs have been applied to a wide
range of roof structures as cylindrical shell models (Li and Tamura, 2005) or long-span roof
structures, for example to the 486 m long roof of the Shenzhen Citizens Centerwith in China
(Fu et al., 2008).

Objectives

The concept of equivalent static wind loads aiming at reproducing as close as possible spe-
cific responses that would be obtained with a formal buffeting approach has been enhanced
through the decades mainly assuming Gaussian processes. Table IV.1 shows the domain of
applicability of the methods discussed herebefore.

Framework: Gaussian non-Gaussian
Structural behavior: Quasi-static Dynamic Quasi-static Dynamic

With realizations: CST-based 7 CST-based 7

Nodal basis: LRC-based 7 LRC-based 7

Hybrid basis: - Hybrid-based - Hybrid-based

Table IV.1: Domain of applicability for the main three actual formulations of equivalent
static wind loads.

The conditional sampling technique, by nature, incorporates the non-Gaussian aspects
in both aerodynamic loads and structural responses. Conversely, the LRC methods and
hybrid-based ESWLs were developed assuming Gaussian processes. Actually, Kasperski
(1992) avoids a formal extension to non-Gaussian processes arguing that, the LRC method
would provide “[...] a very close approximation to the real load pattern for non-Gaussian
load processes [...]”. However, disharmony has been shown between the “Gaussian” ESWLs
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obtained with the LRC method and those obtained with statistical treatment of wind-tunnel
measurements (Tamura et al., 2002). However, it is emphasized that the LRC- and hybrid-
based ESWL formulations are sometimes used for non-Gaussian processes together with
non-Gaussian peak factors (Tamura et al., 2002).

In fact, there is today no agreement, to the author’s knowledge on how to formally extend
the concept of ESWL in a non-Gaussian framework. This has especially motivated a study
of a “non-Gaussian” formulation of ESWLs as a main objective of this Chapter.

Outline of the Chapter

Section IV.2 reports the objective of an equivalent static wind load and formulates the
envelope value and non-overestimation conditions. In section IV.3, the conditional sampling
technique is discussed and Section IV.4 presents the well-known LRC method. Sections IV.5
and IV.6 detail ESWLs computed with modal inertial loads and as weighted combinations
of background and resonant components, respectively.

Section IV.7 introduces a subclass of ESWLs, termed the Conditional Expected SWLs,
through a novel method, relevant for any structural behavior, quasi-static, mixed or resonant
and for Gaussian and non-Gaussian structural responses. The method is particularized
for a certain class of non-Gaussian processes through a bicubic translation model of joint
probability density derived in Section IV.8. Section IV.9 discusses a two-step adjustement
method to ensure that ESWLs statisfy both the envelope value and non-overestimation
conditions.

Finally, in Section IV.10, the ESWLs are normalized and a general metohdology to rank
them for the envelope reconstruction problem is described.

IV.2 Concept

The following developments are relevant for Gaussian and non-Gaussian structural responses
resulting from linear quasi-static and dynamic structural behaviors. To be general, ESWLs
are expressed with the nodal forces in the sequel, even if ESWL derived in a quasi-static
framework is usually expressed with the aerodynamic pressures, still it may be transformed
into nodal forces using (II.4.2).

Objective of an ESWL

Through a static analysis, the main objective of the i-th equivalent static wind load, denoted
by

f
(e,m)
(i) , (IV.2.1)

is to target one of the two envelope values (m ≡ min or m ≡ max) of the i-th structural

response r
(m)
i . The superscript “e” stands for “equivalent” (static wind load).

Envelope value condition

The static responses under f
(e,m)
(i) are given by
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r
(e,m)
(i) = Lf

(e,m)
(i) . (IV.2.2)

By invoking the concept of equivalence, the i-th structural response under f
(e,m)
(i) must in

principle satisfy

r
(e,m)
i(i) = r

(m)
i , (IV.2.3)

which defines the envelope value condition. In other words, an ESWL statically applied to
the structure, should exactly produce the targeted structural response for which it has been
derived.

Non-overestimation condition

From the conceptual point of view, it would be desired that the static analysis under f
(e,m)
(i)

satisfies (IV.2.3) and the following non-overestimation condition (of the envelope)

r
(min)
j 6 r

(e,m)
j(i) 6 r

(max)
j ∀j ∈ [1, nr] . (IV.2.4)

Indeed, an ESWL derived for a specific response should not produce, in principle, responses
in other locations larger than their envelope values.

Envelope reconstruction problem

The both conditions that an ESWL is expected to fulfill are independent of the type of
analysis (background, hybrid or resonant and Gaussian or non-Gaussian) performed to ob-
tain the envelope

(
r(min), r(max)

)
. However, depending on the formulation of ESWLs, these

two conditions may not be guaranteed. This is studied in Section IV.7. If the two above
conditions are met, the reconstructed envelope obtained with a sufficient number ns of static
analyses should reconstruct the real envelope, at the least with 2nr ESWLs.

Total ESWL

Finally, the total ESWL reads

f
′(e,m)
(i) = µf ′ + f

(e,m)
(i) , (IV.2.5)

with µf ′ the mean wind load component.
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IV.3 Conditional sampling technique

This Section describes the conditional sampling technique relevant for structures with a
quasi-static behavior. In this technique, realizations of aerodynamic pressures, obtained in
wind-tunnel, measured in situ or resulting from computational fluid dynamic simulations
are required. If the envelope values are obtained from realisations as described next, the
envelope value condition is satisfied. In any case, the formulation discussed hereinafter do
not ensure that the non-overestimation condition is satisfied.

Envelope of structural responses

In a statistical framework, where time series are available, envelope values of structural
responses may also be obtained with inferential statistics on realizations instead of the model
adopted in the thesis, described in Section II.3. These realizations are computed by time-
domain analysis performed with the sampled aerodynamic pressures. The observed extreme
values of the i-th structural response on the k-th observation window and occurring at time
tk, denoted by r

(ext)
i (tk), are identified on each observation window and with their average,

r
(S,m)
i = mean

tk

[
r
(ext)
i (tk)

]
, k ∈ [1, nt], (IV.3.1)

an observed peak factor g
(S,m)
i = r

(S,m)
i /σri may be computed as well. The total number of

observation window is denoted by nt. The symbol “S” stands for (conditional) “Sampling”
(technique). The average of the observed extreme values tends to the exact envelope value, as
the number of observation windows increases. However, the number of observation windows
(in full-scale) usually measured is rather low due to the amount of data to be stored. As a
result, the confidence intervals of the observed peak factor may be rather large. This is a
reason why estimated peak factors are computed using advanced evaluation methods (Sadek
and Simiu, 2002; Gioffrè et al., 2000).

Common formulation

Common practice consists in identifying extreme values of structural responses on each ob-
servation window and sampling the associated pressure distributions (Holmes, 1988; Tamura
et al., 2002). The common sampling formulation of an ESWL (p(e,m) ≡ p(S,m)) is then defined
as the average of these sampled load patterns

p
(S,m)
(i) = mean

tk

[
p

(ext)
(i) (tk)

]
, k ∈ [1, nt], (IV.3.2)

where p
(ext)
(i) (tk) is the k-th load pattern associated with the i-th extreme value r

(ext)
i (tk) of a

structural response on the k-th observation window and occurring at time tk. The superscript
ext stands for “extreme” (values of structural responses).
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IV.4 Load-Response Correlation method

Under Gaussian loading and in case of structures with a quasi-static behavior, Kasperski
(1992) derived the pioneering Load-Response Correlation (LRC) method to compute ESWLs.

Original demonstration

Using (II.4.13), the variance of the i-th structural response reads

σ2
ri

=

nl∑
k=1

nl∑
l=1

BikBilρpkplσpkσpl , (IV.4.1)

where ρpkpl is the correlation coefficient between the k-th and l-th components of p(t).
Substituting (IV.4.1) into (II.4.15), the envelope value associated with the i-th structural
response yields

r
(m)
i =

nl∑
k=1

Bik

(
g

(m)
i

nl∑
l=1

Bilρpkplσpk

σpl

σrbi

)
, (IV.4.2)

and the term in parentheses gives the k-th component of the ESWL (p(e,m) ≡ p(L,m)) asso-
ciated with the i-th structural response

p
(L,m)
k(i) = g

(m)
i

nl∑
l=1

Bilρpkplσpk

σpl

σrbi

, (IV.4.3)

where symbol “L” stands for “Load” (-response correlation method).

With CPT loading modes

Holmes (1992) established LRC-based ESWLs using linear combinations of a small number
ncpt of CPT loading modes, introduced in Section II.8.2. The LRC-based ESWL (p(e,m) ≡
p(LC ,m)) targeting the i-th envelope value is given by

p
(LC ,m)
k(i) =

ncpt∑
m=1

P
(C)
kmW

(C,m)
mi , (IV.4.4)

with the weighting factors given by

W
(C,m)
mi =

g
(m)
i

σrbi

λcm

nl∑
j=1

BijP
(C)
jm. (IV.4.5)

The symbol“LC” stands for“Load” (-response correlation method) with“Covariance” (proper
transformation loading modes). In the early nineties, this approach simplified the computa-
tion of ESWLs and for large structures for which an important number of ESWLs may be
established, it greatly reduces the data storage.
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IV.5 Modal inertial loads-based ESWLs

If ESWLs are only expressed with the modal inertial loads they are so-called MIL-based
ESWLs and are detailed here. In fact, they are a limit case of the hybrid-based ESWLs
which are described in the following Section IV.6. Chen and Kareem (2001) formalized
hybrid-based ESWLs as weighted combinations of background ESWLs obtained with the
LRC method and resonant ESWLs formulated with modal inertial loads.

In the framework of a full modal analysis, Fu et al. (2008) promote the use of MIL-based
ESWLs in these terms “[...] the formula derived for the ESWL [...] can be applied to all
kinds of structural systems [...]”. However, several required features of the kind of structural
system must be formulated before following blindly the hereinbefore assertion. First, the
background contribution of structural responses must be well approximated with the nm
modes retained for the modal analysis or at least the background-resonant ratio should be
very low. Second, even if the background contribution of responses is well approximated
with the nm modes, the contribution of the applied nodal forces f to the ESWLs, may be
poorly-represented with the same number nm of modal inertial loads. In other words, Fu
et al. (2008) postulates

nm∑
i=1

F
(M)
i qb

i ' f , (IV.5.1)

which is not guaranteed in the framework of a full modal analysis.

Original demonstration

Substituting (II.5.4) into (II.4.9), structural responses, in a modal basis, read

r = Ox = OΦq, (IV.5.2)

and inserting (II.5.11) into (IV.5.2), structural responses become expressed with modal in-
ertial loads

r = LF(M)q. (IV.5.3)

The variance of the i-th structural response is found as

σ2
ri

=
nm∑
m=1

nm∑
n=1

(
nt∑
k=1

LikF
(M)
km

)(
nt∑
l=1

LilF
(M)
ln

)
σqmqn ,

=
nm∑
m=1

nm∑
n=1

(
Li◦F

(M)
m

) (
Li◦F

(M)
n

)
σqmqn , (IV.5.4)

with Li◦F
(M)
m =

∑nt
k LikF

(M)
km and Li◦F

(M)
k =

∑nt
k LikF

(M)
kn . The i-th envelope value r

(m)
i =

g
(m)
i σri , is reformulated using (IV.5.4), that yields
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r
(m)
i = g

(m)
i

nm∑
m=1

nm∑
n=1

Li◦F
(M)
m Li◦F

(M)
n

σqmqn

σri

,

= Li◦

(
nm∑
m=1

nm∑
n=1

g
(m)
i F(M)

m Li◦F
(M)
n

σqmqn

σri

)
, (IV.5.5)

and the term in parentheses gives the ESWL
(
f (e,m) ≡ f (M,m)

)
expressed as a weighted com-

bination of the modal inertial loads, such as

f
(M,m)
(i) =

nm∑
m=1

nm∑
n=1

g
(m)
i F(M)

m Li◦F
(M)
n

σqmqn

σri

,

=
nm∑
m=1

F(M)
m W

(M,m)
mi , (IV.5.6)

with the weighting factors W
(M,m)
mi expressed by

W
(M,m)
mi =

nm∑
n=1

g
(m)
i Li◦Fn

σqmqn

σri

. (IV.5.7)

IV.6 Hybrid-based ESWLs

Chen and Kareem (2001) formalized hybrid-based ESWLs as weighted combinations of back-
ground ESWLs obtained with the LRC method, see Section IV.4 and resonant ESWLs for-
mulated with modal inertial loads, see Section IV.5. From our point of view, this method
remains in the literature so far the best option to compute ESWLs for structures with a
dynamic behavior. The method is relevant for structures responding in several, eventually
coupled, modes. Even if the method was originally presented for the buffeting response of
bridges it is in fact general.

Original demonstration The nodal background modal resonant (hybrid) analysis is per-
formed and the variance of the i-th structural response is derived from

σ2
ri

= σ2
rbi

+ σ2
rri
, (IV.6.1)

considering a timescale separation, i.e., the mixed background/resonant contributions are

negligible, see Sections II.6.3 and II.7. Using (IV.6.1), the i-th envelope value r
(m)
i = g

(m)
i σri ,

is expressed by

r
(m)
i = g

(m)
i

√
σ2

rbi
+ σ2

rri
,

=
(

wb
i g

(m)
i σrbi

+ wr
ig

(m)
i σrri

)
,

= Li◦f
(LbMr,m)
(i) , (IV.6.2)
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where wb
i and wr

i are structural factors given by

wb
i =

σrbi

σri

, wr
i =

σrri

σri

. (IV.6.3)

The symbol “LbMr” stands for “Load” (-response correlation method) for the “background”
contribution and “Modal” (interial loads) for the “resonant” contribution. The hybrid-based

ESWL
(
f (e,m) ≡ f (LbMr,m)

)
in (IV.6.2) is expressed as a weighted combination of LRC-based

and MIL-based ESWLs, such as

f
(LbMr,m)
(i) = f

(Lb,m)
(i) + f

(Mr,m)
(i) . (IV.6.4)

The LRC-based ESWL targets the background contribution of the structural response

f
(Lb,m)
k(i) =

nc∑
m=1

F
(C)
kmW

(Cb,m)
mi , (IV.6.5)

with the weighting factors given by

W
(Cb,m)
mi = wb

i

(
g

(m)
i

σrbi

λcm

nl∑
j=1

BijP
(C)
jm

)
. (IV.6.6)

The MIL-based ESWL targets the resonant (and not the dynamic here) contribution
(
f (e,m)≡

f (Mr,m)
)

of the structural response and we have

f
(Mr,m)
k(i) =

nm∑
m=1

F
(M)
km W

(Mr,m)
mi , (IV.6.7)

with the weighting factors that read

W
(Mr,m)
mi = wr

i

(
nm∑
n=1

g
(m)
i Li◦F

(M)
n

σqr
mqr

n

σrri

)
. (IV.6.8)
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IV.7 Conditional Expected Load method

This section presents the Conditional Expected Load method (CEL) as a unique formu-
lation for structures with (i) various dynamical behaviors, from background to resonant,
(ii) analyzed in nodal, or hybrid basis, (iii) in a Gaussian or non-Gaussian framework and
(iv) without the assumption of timescale separation. In a Gaussian framework, the proposed
method develops the LRC-based ESWLs for quasi-static structural behavior, and the hybrid-
based ESWLs for structures with resonant behaviors if there is a clear timescale separation.
For the latter case, the proposed formulation does not require separating background and
resonant contributions of the ESWL. After the structural analysis is performed, the elastic
forces (II.4.3) are the relevant quantities to establish CEL-based ESWLs.

IV.7.1 Conditional Expected Static Wind Load

Chen and Zhou (2007) stressed that “The load distribution for a given peak response is not
necessarily unique simply because that multiple load distributions can result in an identical
response.”

The uniqueness of the equivalent static wind load is not ensured by the envelope value and
non-overestimation conditions (IV.2.3) and (IV.2.4), respectively. Moreover, even completely
unrealistic distributions of elastic forces may satisfy them without being plausible at all.
Thinking with possible realisations, there exists an infinite collection of distributions of
elastic forces producing static responses satisfying the envelope value condition. To all these
plausible static elastic loads might be attributed a certain likelihood, which is measured here
as the conditional multivariate PDF of the elastic forces given the structural response ri

ψf e|ri
(
fe1, . . . , f

e
nt , ri

)
=
ψf eri

(
fe1, . . . , f

e
nt , ri

)
ψri(ri)

, (IV.7.1)

where ψf eri

(
fe1, . . . , f

e
nt , ri

)
is the joint nt+1-dimensional PDF of the elastic forces and the

considered structural response and ψri(ri) is the marginal PDF of the considered structural
response. We introduce the Conditional Expected Static Wind Load (CESWL) as the av-
erage of these plausible elastic forces conditioned upon recovery of the considered response.
Mathematically, it is defined by

f (E,m) = E
[
f e|ri = r

(m)
i

]
= µf e|ri(r

(m)
i ), (IV.7.2)

where the symbol “E” stands for “conditional Expected value” and the k-th component of the
conditional expected static wind load is simply obtained as

µfek|ri(r
(m)
i ) =

ˆ
R

fek ψfek|ri

(
fek, r

(m)
i

)
dfek, (IV.7.3)

where ψfek|ri

(
fek, r

(m)
i

)
is the conditional PDF of the k-th elastic force given the i-th envelope

value ri = r
(m)
i . The PDF of the elastic force fek conditioned on the structural response ri

is obtained by a multi-fold integration of the conditional multivariate PDF (IV.7.1) with
respect to all other elastic forces

ψfek|ri (fek, ri) =

ˆ ∞
−∞
· · ·
ˆ ∞
−∞

ψf e|ri
(
fe1, . . . , f

e
nt , ri

)
dfe1 · · · dfek−1dfek+1 · · · dfent . (IV.7.4)
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As such, each component of the CESWL (IV.7.3) might be derived from the sole knowledge
of the conditional distribution (IV.7.4) of each elastic force given a structural response.

The loading given by (IV.7.2) is such that the corresponding static response r(E,m) =
Lf (E,m) satisfies the envelope value condition

r
(E,m)
i =

nl∑
k=1

Likf
(E,m)
k =

nl∑
k=1

Lik E
[
fek|ri = r

(m)
i

]
= E

[(
nl∑
k=1

Likf
e
k

)
|ri = r

(m)
i

]
,(IV.7.5)

= E
[
ri|ri = r

(m)
i

]
= r

(m)
i , (IV.7.6)

as a consequence of the linearity of the structural behaviour. Also, the non-overestimation
condition is an inherent feature of the conditional expected static wind load since we have

r
(min)
j 6 E

[
rj|ri = r

(m)
i

]
6 r

(max)
j , ∀j ∈ [1, nr] , (IV.7.7)

where E
[
rj|ri = r

(m)
i

]
is the average of the j-th response conditioned on ri = r

(m)
i . In a

Gaussian-context, Eq. (IV.7.7) reads

g
(min)
j 6 g

(m)
i ρrjri 6 g

(max)
j , ∀j ∈ [1, nr] . (IV.7.8)

Because of the properties (IV.7.5) and (IV.7.7), the envelope value and non-overestimation
conditions are in theory fulfilled and the Conditional Expected Static Wind Load introduced
in (IV.7.2) is a formal kind of ESWL, that is readily applicable in non-Gaussian frameworks.

Conditional expected aerodynamic pressures

For a quasi-static structural behavior, elastic loads f e(t) are equal to the external nodal
forces f(t) that can be directly obtained from aerodynamic pressures p(t). If the conditional

PDF ψpk|ri(pk, r
(m)
i ) of the k-th aerodynamic pressure pk given the i-th structural response

r
(m)
i is known, then the conditional mean value found as

µ
pk|r

(m)
i

=

ˆ
R

pk ψpk|ri(pk, r
(m)
i ) dpk, (IV.7.9)

gives the k-th component of the conditional expected SWL

p
(E,m)
k(i) = µ

pk|r
(m)
i
, (IV.7.10)

in terms of the aerodynamic pressures.
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The definition (IV.7.3) is central for the following developments and provides the essential
information to extend the classical notions of ESWL in a non-Gaussian framework in Section
IV.8. Indeed, this kind of static wind load that Kasperski (1992) and Chen and Kareem
(2001) are used to call “[...] the most probable load [...]” must actually be understood as
the expected load conditioned upon recovery of the considered response. In the Gaussian
framework this does not make any difference; it is however of paramount importance in a
non-Gaussian one. Extension of “the most probable load” to the non Gaussian setting is
therefore seen as the mean, not the mode (most probable), nor the median. Finally, it is
worth noticing that the probabilistic definition of a conditional expected SWL is unique, in
the sense of the envelope value condition.
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IV.7.2 Gaussian framework

Assuming Gaussian elastic forces and structural responses, the k-th component of the con-
ditional expected SWL (f (e,m) ≡ f (EN ,m)) is known in a closed-form as

f
(EN ,m)
k(i) = µN

fek|r
(m)
i

=
r
(m)
i

σri

ρfekriσfek
= g

(m)
i ρfekriσfek

, (IV.7.11)

where the Gaussian conditional mean value µN
fek|r

(m)
i

is derived from (II.2.20) with x ≡ fek,

y ≡ r
(m)
i and ρfekri , the correlation coefficient between the k-th elastic force and the i-th

structural response (see Section IV.7.4). The symbol “EN” stands for CEL-based ESWLs in
a Gaussian context.

The j-th structural response under the conditional expected SWL that targets the i-th
envelope value r

(m)
i is found as

r
(EN ,m)
j(i) =

nt∑
k=1

Ljk

(
g

(m)
i

nt∑
l=1

Lilρfekfel
σfek
σfel

1

σri

)
= g

(m)
i ρrjriσrj = µN

rj |r
(m)
i

. (IV.7.12)

The previous equation means that the j-th structural response r
(EN ,m)
j(i) under f

(EN ,m)
(i) takes

its value in average conditioned on ri = r
(m)
i . In other words, the conditional expected

SWL associated with the i-th structural response provides the values in average of all other
structural responses conditioned on the target envelope value. As a consequence, the non-
overestimation condition reads

g
(min)
j 6 g

(m)
i ρrjri 6 g

(max)
j ∀j ∈ [1, nr] , (IV.7.13)

which is satisfied if a unique peak factor is considered for all structural responses. As seen in
Chapter III, peak factors are different for each structural response (unless they are perfectly
correlated) and therefore (IV.7.13) is not naturally fulfilled. A unique peak factor may be
a good approximation for Gaussian processes since the range of variation should be rather
low but cannot be stated for non-Gaussian processes.

IV.7.3 Non-Gaussian framework

The derivation of the conditional expected SWL requires the conditional PDF ψfek|ri(x) of
the k-th elastic force fek conditioned on the i-th structural response ri written as

ψfek|ri(x) =
ψfekri(x, y)

ψri(y)
, (IV.7.14)

where ψfekri(x, y) is their joint PDF and ψri(y) is the marginal PDF for the i-th structural
response. As a matter of fact, any non-Gaussian formulation of a conditional expected SWL
(f (e,m) ≡ f (E,m)) can only be an approximation of the actual one, since the methods used
to estimate the marginal, joint and conditional PDFs of non-Gaussian processes can only
be approximations of the real ones. The symbol “E” stands for CEL-based ESWLs in a
non-Gaussian context.
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At this stage two distinct approaches may be pointed out. A class of methods consists
in non-parametric estimations of these PDFs, for instance, through the maximum entropy
method (Shannon and Weaver, 1948; Lang and Mathematician, 1987) or the recourse to
kernel density estimation (Rosenblatt, 1956; Azzalini and Bowman, 1997). Another class
collects the methods seeking parametric estimations of PDFs. This latter category is adopted
in Section IV.8 since our purpose is to find a closed-form estimation for the conditional mean
value.

The bicubic translation model

In Section IV.8 is derived a parametric “bicubic translation” model for the joint and con-
ditional PDFs. With this model the k-th component of the conditional expected SWL
(f (e,m) ≡ f (EB,m)) targeting the i-th envelope value r

(m)
i is defined as

f
(EB,m)
k(i) = µB

fek|r
(m)
i

, (IV.7.15)

where µB
fek|r

(m)
i

is given by (IV.8.8) with x ≡ fek and y ≡ r
(m)
i . The symbol “EB” stands for

CEL-based ESWLs in a non-Gaussian context computed with the “Bicubic” model.

IV.7.4 Covariance matrix of elastic forces

In order to establish conditional expected SWLs with the CEL-method, the standard de-
viation of elastic forces and correlation between elastic forces and structural responses are
required. The covariance matrix of elastic forces, that reads

Σf e , (IV.7.16)

must be computed first and from (II.4.10), the cross-covariance matrix between structural
responses and elastic forces is derived from

Σrf e = LΣf e . (IV.7.17)

The correlation coefficient between the k-th elastic force and the i-th structural response is
written

ρfekri =

nl∑
l=1

Lilρfekfel
σfel
/σri . (IV.7.18)

Two formulations providing the covariance matrix of elastic forces Σf e , to use in (IV.7.17),
are detailed next.

Formulation 1

Using (II.4.3), the elastic forces are expressed as

f e = Kx, (IV.7.19)

and the covariance matrix of elastic forces is derived from
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Σf e = KΣxKT. (IV.7.20)

Equation (IV.7.20) requires the covariance matrix Σx that is computed according to the
type of analysis performed (see Section II.6). The full nodal or nodal background modal
resonant (hybrid) analyses are recommended. In a full modal analysis, even if the background
contribution of structural responses is accurately evaluated, computing the contribution of
the applied forces f to the elastic forces f e demands more modes than the structural analysis
does. This is illustrated in Chapter VI. To avoid this issue a second formulation is introduced.

Formulation 2

Using equations (II.4.4)-(II.4.5)-(II.4.6), the covariance matrix Σf e may be also derived from

Σf e = Σf + Σf f i + Σf i f + Σf i + Σfd

= Σf + Σf ẍMT + MΣẍ f + MΣẍMT + CΣẋCT,
(IV.7.21)

and the covariance matrices Σẋ and Σẍ may be computed in a nodal or modal basis, see
Sections II.6.1 and II.5, respectively.

This second formulation has the advantage to include, naturally, the exact contribution
of the applied forces f to the elastic forces f e, no matter the type of analysis performed.
Also, the contributions from the damping and inertial forces as well as cross terms between
the wind forces f and the inertial forces f i are enhanced. Equation (IV.7.21) contains many
terms. With the objective to simplify this expression, their relative contributions to the
covariance matrix of elastic forces are studied next.

Damping forces As a matter of fact, the damping forces are usually assumed to be small
compared to inertial forces and therefore disregarded (Dickens et al., 1997). In the modal
basis, the study of the relative magnitude of damping and inertial forces can be conducted.
Assuming the damping to be proportional, the modal damping matrix is diagonal and reads

D = diag(2ξjωj), (IV.7.22)

and using the resulting property (II.5.19), damping and inertial forces read

fd = MΦDq̇, (IV.7.23)

f i = MΦq̈. (IV.7.24)

The modes of vibration have been derived from a generalized eigenvalue problem (II.5.1),
rewritten here as

KΦ = MΦΩ, (IV.7.25)

with Ω = diag
(
ω2
j

)
, so that the modal inertial loads (II.5.11) also read

F(M) = MΦΩ, (IV.7.26)
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and inserting (IV.7.26) into (IV.7.23) and (IV.7.24), damping and inertial forces are found
as

fd = F(M)Ω−1Dq̇ = F(M)Wd, (IV.7.27)

f i = F(M)Ω−1q̈ = F(M)Wi, (IV.7.28)

with Wd = Ω−1Dq̇ and Wi = Ω−1q̈, the weighting factors of modal inertial loads for the
damping and inertial forces, respectively. Based on (IV.7.27) and (IV.7.28), the covariance
matrices of fd and f i are expressed as

Σfd = F(M)ΣWd (
F(M)

)T
, (IV.7.29)

Σf i = F(M)ΣWi (
F(M)

)T
, (IV.7.30)

with

ΣWd

= Ω−1DΣq̇DTΩ−1, ΣWi

= Ω−1Σq̈Ω−1.

The (m,n) entries of covariance matrices Σq̇ and Σq̈ are derived from the (m,n) entries of
covariance matrix Σqr

as (II.7.35)

Σq̇
mn = ωmωnΣqr

mn, Σq̈
mn = ω2

mω
2
nΣqr

mn. (IV.7.31)

Using (IV.7.31) and (IV.7.22), the (m,n) entries of covariance matrices of weighting factors

ΣWd

and ΣWi

are derived from

ΣWd

mn = Ω−1
mmDmmΣq̇

mnDnnΩ−1
nn = 4ξmξnω

−1
m ω−1

n Σq̇
mn = 4ξmξnΣqr

mn, (IV.7.32)

ΣWi

mn = Ω−1
mmΣq̈

mnΩ−1
nn = Σqr

mn, (IV.7.33)

and finally a relation of 1/(4ξmξn) between ΣWi

mn and ΣWd

mn is highlighted. For usual damping
coefficients, the belief that damping forces are negligible compared to inertial forces is thus
demonstrated. For example, with damping coefficients ξm = ξn = 1% , the entries ΣWi

mn are
2.5·103 greater than ΣWd

mn. Therefore, (IV.7.21) is simplified as

Σf e ' Σf + Σf f i + Σf i f + Σf i ,
' Σf + Σf ẍMT + MΣẍ f + MΣẍMT.

(IV.7.34)

Cross term between inertial forces f i and wind forces f The covariance matrix of
inertial and wind forces is expressed by

Σf i f = MΣẍ f . (IV.7.35)

In a modal basis, the cross-PSD matrix of nodal accelerations and wind forces is given by

Sẍf = ΦSq̈f , (IV.7.36)
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and the (m, i) entries of the cross-PSD matrix of modal accelerations and nodal forces is
found as

Sq̈f
mi = −ω2HmmSg f

mi,

= −ω2HmmΦT
mSf
◦i. (IV.7.37)

A full integration of Sq̈f is required to finally obtain the cross-covariance matrix of inertial
and wind forces as

Σf i f = MΦΣq̈f . (IV.7.38)

Therefore, from a computational point of view, formulation 1 should be preferred.

Timescale separation condition Considering a timescale separation, the timescales as-
sociated with wind forces are expected to be significantly different from timescales of inertial
forces. Under this condition, cross term between inertial forces f i and wind forces f are
neglected and the covariance matrix Σf egiven by (IV.7.34) is further simplified as

Σf e ' Σf + Σf i ,
' Σf + MΣẍMT,

(IV.7.39)

with assumption of proportional damping.

IV.7.5 Review of the LRC-, CST-, MIL- and hybrid-based meth-
ods in the perspective of the CEL method

In the light of the definition of a conditional expected SWL (IV.7.2), classic methods to
compute ESWLs are next reviewed. A straightforward extension of the common conditional
sampling technique to structures with a dynamic behavior is derived. However, it appears
that this technique does not provide the conditional expected SWL in a non-Gaussian frame-
work. Also, it is demonstrated that LRC-, MILs- and hybrid-based ESWLs are particular
cases of conditional expected SWLs derived from the CEL method in a Gaussian context.

Review of the LRC-based ESWLs

◦ The LRC-based ESWL, described in Section IV.4, is the conditional expected SWL,
i.e., p(L,m) = p(EN ,m) in a Gaussian framework. From (IV.7.10), the k-th component of

the LRC-based ESWL targeting the i-th envelope value r
(m)
i in a Gaussian framework

is then alternatively given by

p
(L,m)
k(i) = µN

pk|r
(m)
i

=
r
(m)
i

σri

ρpkriσpk = g
(m)
i ρpkriσpk , (IV.7.40)

where µN
pk|r

(m)
i

= g
(m)
i ρpkriσpk is derived from Equation (II.2.20) with x ≡ pk and y ≡ r

(m)
i

and the correlation ρpkri is expressed by

ρpkri =

nl∑
l=1

Bilρpkpl

σpl

σri

. (IV.7.41)
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◦ The LRC-based ESWLs may be expressed using linear combinations of a small number
of CPT loading modes. An alternative formulation is given here which brings the
meaning of the weighting factors of each CPT loading mode applied to have any ESWL.
Using (II.8.2), the correlation coefficient between aerodynamic pressures and structural
responses is expanded as

ρpkri = E [pk(t)ri(t)] /(σpkσri),

= E[
nc∑
m=1

P
(C)
kmam(t)ri(t)]/(σpkσri),

=
nc∑
m=1

E[P
(C)
kmam(t)ri(t)]/(

√
λcmσri)

√
λcm/σpk ,

=
nc∑
m=1

P
(C)
kmρamri

√
λcm/σpk , (IV.7.42)

with ρamri = E[am(t)ri(t)]/(
√
λcmσri) the correlation coefficient between the m-th prin-

cipal component and the i-th structural response. The LRC-based ESWL is rewritten
as

p
(LC ,m)
k(i) = µN

pk|r
(m)
i

=
nc∑
m=1

P
(C)
km µ

N
am|r(m)

i

, (IV.7.43)

where µN
am|r(m)

i

is the conditional mean value of the m-th principal component given

r
(m)
i , expressed by

µN
am|r(m)

i

= g
(m)
i ρamri

√
λcm, (IV.7.44)

which is equal to the weighting factors (IV.4.5), i.e.,

µN
am|r(m)

i

= W
(C,m)
mi . (IV.7.45)

With this alternative formulation, the meaning of the weighting factors for each CPT
loading mode appears clearly: they are equal to the conditional expected value given
a structural response. Note this probabilistic meaning is not valid in a non-Gaussian
framework where (IV.7.10) cannot be written as

p
(E,m)
k(i) = µ

pk|r
(m)
i
6=

nc∑
m=1

P
(C)
kmµam|r(m)

i
. (IV.7.46)
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Review of the CST-based ESWLs

◦ In the common conditional sampling technique, discussed in Section IV.3, the average
is made on load patterns producing the extreme values r

(ext)
i (tk) on each observation

window, each one being different from the envelope value, i.e., r
(ext)
i (tk) 6= r

(m)
i . This

has serious consequences on the convergence toward the conditional expected SWL. In

a Gaussian framework, the conditional expected SWL p
(EN ,m)
(i) = p

(L,m)
(i) associated with

the i-th structural response is linear with respect to the value given to ri, see (IV.7.40).

Hence, if the peak factor computed is the actual one, i.e., g
(m)
i = g

(S,m)
i , the formulation

given by (IV.3.2) tends to the conditional expected SWL, i.e., p
(S,m)
(i)

∣∣∣
nT→∞

= p
(E,m)
(i) .

In a non-Gaussian framework, the conditional expected SWL p
(E,m)
(i) associated with

the i-th structural response is nonlinear with respect to the value given to ri and
thus the loading p

(S,m)
(i) does not converge toward the conditional expected SWL, i.e.,

p
(S,m)
(i)

∣∣∣
nT→∞

6= p
(E,m)
(i) , even if g

(m)
i = g

(S,m)
i .

◦ The actual conditional sampling formulation of the ESWL (p(e,m) ≡ p(SA,m)) should be

p
(SA,m)
(i) = mean

k
p

(m)
(i) (tk), k ∈ [1, nt], (IV.7.47)

where p
(m)
(i) (tk) is a snapshot of the load distribution associated with the i-th envelope

value of a structural response r
(m)
i sampled on the k-th observation window and occur-

ring at time tk. With this formulation and with a large number of observation windows,

the loading p
(SA,m)
(i) tends to the conditional expected SWL, i.e., p

(SA,m)
(i)

∣∣∣
nT→∞

= p
(E,m)
(i) .

The method may be applied to non-Gaussian structural responses without limitation.
However two drawbacks are pointed out: (i) the envelope value may not be reached
during each observation window and (ii) due to the time discretization, the envelope
value may not be exactly computed. These drawbacks due to the time sampling sup-
port the use of the common formulation described in Section IV.3.

◦ A straightforward extension of the common conditional sampling technique to struc-
tures with a dynamic behavior is next derived. On each observation window, extreme
values of the target structural response are identified and the associated elastic forces
are computed. The common sampling formulation of an ESWL (f (e,m) ≡ f (S,m)) is then
defined as the average of these sampled elastic forces

f
(S,m)
(i) = mean

k
f
e,(ext)
(i) (tk), k ∈ [1, nt], (IV.7.48)

where f
e,(ext)
(i) (tk) is the k-th elastic forces pattern associated with the extreme value

r
(ext)
i (tk) of a structural response in the k-th observation window and occurring at time
tk. In case of proportional damping, the damping forces are negligible and the sampling
formulation may be expressed as

f
(S,m)
(i) = mean

k
f (ext)(tk) + mean

k
f i,(ext)(tk), k ∈ [1, nt] (IV.7.49)
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where f
(ext)
(i) (tk) and f

i,(ext)
(i) (tk) are respectively the k-th wind load pattern and the k-

th inertial forces pattern associated with the extreme value r
(ext)
i (tk) of a structural

response on the k-th observation window and occurring at time tk.

Review of the MIL-based ESWLs

◦ The MIL-based ESWL, described in Section IV.5, is the conditional expected SWL,
i.e., f (M,m) = f (EN ,m) in a Gaussian framework. In a Gaussian framework, the k-th
component of the ESWL (IV.7.2) can be differently expressed as

f
(M,m)
k(i) = µN

fek|r
(m)
i

=
nm∑
m=1

F
(M)
km µN

qm|r(m)
i

, (IV.7.50)

where µN
qm|r(m)

i

is the conditional mean value of the m-th modal amplitude given r
(m)
i ,

equal to the weighting factor (IV.5.7), i.e.,

µN
qm|r(m)

i

= W
(M,m)
mi . (IV.7.51)

This probabilistic meaning is not valid in a non-Gaussian framework where (IV.7.2)
cannot be written as

f
(E,m)
k(i) = µ

fek|r
(m)
i
6=

nm∑
m=1

F
(M)
km µ

qm|r(m)
i
. (IV.7.52)

Review of the hybrid-based ESWLs

◦ In a Gaussian framework, the k-th component of the conditional expected SWL is
expressed as

f
(EN ,m)
k(i) = µN

fek|r
(m)
i

= g
(m)
i ρfekriσfek

, (IV.7.53)

with ρfekri = E [fekri] /
(
σfek
σri

)
. With the background/resonant decomposition, struc-

tural responses are written ri = rbi + rri and elastic forces are expressed as

fek = fk + frk, (IV.7.54)

where frk = −
(
fdk + f ik

)
is the resonant component of elastic forces that collects damping

and inertial forces, see (II.4.4). The correlation coefficient between the k-th elastic force
and the i-th structural response is expressed by

ρfekriσfek
= E [fekri] /σri ,

= E
[
(fk + frk)

(
rbi + rri

)]
/σri ,

=
(
E
[
fkr

b
i

]
+ E [fkr

r
i] + E

[
frkr

b
i

]
+ E [frkr

r
i]
)
/σri ,

= wb
i

(
ρfkrbi

σfk + ρfrkrbi
σfrk

)
+ wr

i

(
ρfkrri

σfk + ρfrkrri
σfrk

)
, (IV.7.55)
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where wb
i and wr

i are structural factors defined by (IV.6.3). By substituting (IV.7.55)
into (IV.7.53) and noticing that the LRC-based ESWL (IV.6.5) and MIL-based ESWL
(IV.6.7) that target the background and resonant component of the i-th structural
response, respectively, are alternatively expressed as

f
(Lb,m)
k(i) = g

(m)
i wb

i ρfkrbi
σfk , f

(Mr,m)
k(i) = g

(m)
i wr

iρfrkrri
σfrk
, (IV.7.56)

the conditional expected SWL (IV.7.53) may be given by

f
(EN ,m)
k(i) = f

(LbMr,m)
k(i) + wb

i ρfrkrbi
σfrk

+ wr
iρfkrri

σfk , (IV.7.57)

with f
(LbMr,m)
k(i) the hybrid-based ESWL expressed by (IV.6.4). With (IV.7.57), it is

emphasized that the method proposed by Chen and Kareem (2001) neglects mixed
background/resonant contributions brought by wb

i ρfrkrbi
σfrk

+wr
iρfkrri

σfk since the method
considered a timescale separation of background and resonant components.

Summary

In a Gaussian framework, the two conditional expected SWLs for the minimum and maxi-

mum envelope values f
(EN ,min)
(i) and f

(EN ,max)
(i) only differ by their sign, i.e., f

(EN ,min)
(i) = −f

(EN ,max)
(i)

while in a non-Gaussian framework, they are different load patterns, i.e., f
(E,min)
(i) 6= −f

(E,max)
(i) .

However, it is emphasized that nothing prevents the use of the LRC-, MIL- and mixed-
based ESWL formulation for non-Gaussian processes together with non-Gaussian peak fac-

tors (Tamura et al., 2002). In that case the following equality
1

g
(min)
i

f
(e,min)
(i) =

1

g
(max)
i

f
(e,max)
(i)

holds. In this framework, the envelope value condition is still satisfied since this is a feature
of the “Gaussian” formulation but these ESWLs are no longer the conditional expected ones.

Table IV.2 summarizes the features of the methods in the perspective of the conditional
expected SWL and the envelope value condition.
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Framework Gaussian Non-
Gaussian

Gaussian Non-
Gaussian

Structural
behavior

CESWL? Envelope value?

LRC-based p(L) X - X X Quasi-static

CST p(S)

→ 9 → 9 Quasi-static
(Common) f (S) Dynamic

Hybrid-based f (LbMr) X - X X Dynamic

CEL-based f (E) X X X X Dynamic

Gaussian f (EN ) X - X X Quasi-static

Bicubic model f (EB) X ≈ X 7 Dynamic

Table IV.2: Overview of the features of the methods in the perspective of the conditional
expected SWL and the envelope value condition. The symbols → and 9 respectively mean
that the formulation tends or not to the conditional expected SWL or tends or not to fulfill
the envelope value condition as the number of observation windows increased. The symbol ≈
means that the formulation provides an estimation of the actual conditional expected SWL.
The red cross symbol 7 means that the envelope value condition (IV.2.3) is not necessarily
satisfied.

Table IV.3 emphasizes cases where the non-overestimation condition is satisfied or not.

Framework Gaussian Non-Gaussian
Non-overestimation condition?

CEL-based f (E) X X
Gaussian f (EN ) X 7

Bicubic model f (EB) X 7

Table IV.3: Non-overestimation condition assuming that the mean largest maximum (II.3.6)
and the mean smallest minimum (II.3.8) are the actual ones in (IV.7.7). The red cross
symbol 7 means that the non-overestimation condition (IV.2.4) is not necessarily satisfied.
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IV.8 Non-Gaussian joint probability density function

In this Section, we propose a parametric model for the joint and conditional PDFs such that
the “non-Gaussian” conditional expected SWL formulation seeks (i) consistency, the model
should develop into the Gaussian formulation as a limit case, (ii) applicability, large ranges
of non-Gaussianity in the random processes shall be covered, (iii) accuracy with available
statistical information and (iv) simplicity of the analytical formulation. The latter ensures a
computational efficiency which is required for the subsequent envelope reconstruction prob-
lem.

In this study, we consider the Hermite moment model introduced by Winterstein (1988)
for the approximation of the PDF and discussed in Section II.3.2. We motivate this choice by
several reasons. The model is convenient and well-known in the wind engineering community
for different applications. Also, it is the cornerstone of the model for non-Gaussian peak
factor developed by Kareem and Zhao (1994) which has a large applicability and accuracy.
Finally, using this model for non-Gaussian peak factors, a consistent approach requires that
the Hermite moment model should be kept for the PDF.

Driven by the definition we give of the conditional expected SWL, the establishment of
a non-Gaussian formulation requires the conditional PDF of the loading given an envelope
value. This implies to first derive a model of the joint PDF of the loads and responses and
then the conditional PDF of the load, given a response.

In its domain of applicability and limitations, it is important to stress that the proposed
model described hereinafter for the joint and conditional PDFs is utterly general in the sense
that it could be applied to any set of two random processes. For example, one could want
to derive the joint PDF of two structural responses or two loads.

Joint probability density function In order to provide a simple parametric joint PDF
model between zero-mean non-Gaussian variables x and y, we model x and y as two cubic
monotonic transformations, see (II.3.23), of two correlated standard Gaussian variables u
and v, such as

x = g(u) =
αu
bu

(
u3

3
+ auu

2 + (bu − 1)u− au
)
, (IV.8.1)

y = h(v) =
αv
bv

(
v3

3
+ avv

2 + (bv − 1)v − av
)
, (IV.8.2)

provided the monotone limitations bu − 1 − a2
u ≥ 0 and bv − 1 − a2

v ≥ 0 for each random
variable are fulfilled. The joint PDF is given by

ψBxy(x, y) =
ψNuv(u (x) , v (y))

|J(u (x) , v (y))|
, (IV.8.3)

where ψNuv(u, v) is the Gaussian joint PDF of u and v and J(u, v) =
dg

du

dh

dv
is the Jacobian

of the transformation (Papoulis, 1965). The cross-moments of the random variables x and y
are defined by

E[xmyn] =

¨
R2

g(u)mh(v)nψN (u, v) dudv, (IV.8.4)
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where m and n are the orders of x and y, respectively. We propose to use a bicubic model with
7 parameters, αu, αv, au, av, bu, bv, ρuv where the subscripts of the three parameters α, a, b refer
to the Gaussian variables u and v. These 7 parameters are used to fit 7 statistical moments
σx, σy, γ3,x, γe,x, γ3,y, γe,y, ρxy. In our bicubic model of joint PDF (IV.8.3), the correlation
coefficient ρxy is thus the only imposed cross-moment.

The other cross-moments of the joint PDF are relatively close to the real ones if the non-
Gaussian random variables are slight perturbations of cubic transformations of Gaussian
ones.

To the author knowledge, the fitting of the first four moments of each random variable as
well as their correlation coefficient by means of a parametric bivariate distribution, referred
as bicubic distribution, constitutes a novel contribution.

For comparison, the bivariate skew-normal distribution (Azzalini and Dalla Valle, 1996)
fits 5 statistical moments σx, σy, γ3,x, γ3,y, ρxy while the bivariate skew-t distribution (Azzalini
and Capitanio, 2003) fits 3 statistical moments σx, σy, ρxy and approximates γ3,x, γ3,y, γe,x, γe,y
or fits the 7 statistical moments if γ3,x = γ3,y, γe,x = γe,y. Note that in both bivariate
distributions, only one cross-central moment, the correlation coefficient, is also set to its
real value. For bivariate skew-normal and skew-t distributions, conditioning gives rise to
extended skew-normal and skew-t distributions, respectively (Arellano-Valle and Genton,
2010; Adcock, 2010).

Actually, one could want to derive a joint PDF targeting other cross-moments. However,
this is not our scope because the mathematical formulations may rapidly become complex.
This explanation supports the primary choice to only target the correlation coefficient as
a compromise between accuracy and simplicity. After some developments, the correlation
coefficient between x and y is obtained as a function of the parameters of the bicubic model,
including the correlation ρuv of the two Gaussian processes u and v

ρxy =
αuαv
σxσy

ρuv

(
1 +

2auav
bubv

ρuv +
2

3bubv
ρ2
uv

)
. (IV.8.5)

The single real solution of this cubic equation reads

ρuv(ρxy) =
(
r +

√
q + r2

)1/3

+
(
r −

√
q + r2

)1/3

− auav, (IV.8.6)

where r =
3

4
auavbubv − a3

ua
3
v +

3bubvρxyσxσy
4αuαv

and q =

(
bubv

2
− a2

ua
2
v

)3

with the condition

bubv
2
− a2

ua
2
v ≥ 0.

Figure IV.1 illustrates the joint PDFs computed from Equation (IV.8.3) for correlation
coefficients, equal to -0.4, 0 and 0.4, and for three sets of (γ3, γe). Figures IV.1-(a), (b) and
(c) shows limit cases where the variables are Gaussian. The intermediate case of joint PDFs
of a normal variable and another non-Gaussian is illustrated in Figures IV.1-(d), (e) and (f).
For two non-Gaussian variables, the joint PDFs are drawn in Figures IV.1-(g), (h) and (f).
These illustrations show that a wide variety of joint PDF might be spanned by this bicubic
transformation method.
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Figure IV.1: Joint PDFs of two standard random variables for different couples (γ3, γe) and
three correlation coefficients -0.4, 0 and 0.4. The joint Gaussian pdfs are plotted in red and
the joint pdfs obtained with the bicubic model, in orange.
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Conditional probability density function The conditional PDF of x given y is written

ψBx|y(x, y) =
ψNu|v(u(x), v(y))∣∣∣∣dgdu

(u(x))

∣∣∣∣ , (IV.8.7)

with the conditional mean equal to

µBx|y (y) =
αu
3bu

((v(y)3 − 3v(y)) ρ3
uv + 3au (v(y)2 − 1) ρ2

uv + 3buv(y)ρuv) . (IV.8.8)
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Figure IV.2: Conditional PDFs of x given y = 3.5 (a typical peak value) for different
couples (γ3, γe) and for two correlation coefficients ρxy = −0.4, 0.4. Conditional mean values
are indicated by the cross. The orange line is associated with the non-Gaussian bicubic
conditional PDFs while the red line is for the normal conditional PDFs.

For standard variables x and y, Figure IV.2 illustrates the conditional PDFs of x given
y = 3.5 computed from (IV.8.7). Two kinds of cases are shown in Figure IV.2: the random
variable y is normal and x is not, and both random variables are non-Gaussian. Significant
differences between the non-Gaussian conditional mean values µBx|y(3.5), collected in Table

IV.4, and the Gaussian ones, µNx|y(3.5) = −1.75 and µNx|y(3.5) = 1.75 for ρxy = −0.4 and
ρxy = 0.4 respectively, can be observed in Figure IV.2.
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(γ3,y = 0; γe,y = 0) (γ3,y = 2; γe,y = 6.6) (γ3,y = −2; γe,y = 6.6)
ρxy = −0.4 -0.92 -0.81 -1.14
ρxy = 0.4 2.11 1.17 3.78

Table IV.4: Non-Gaussian conditional mean values µBx|y(3.5) associated with Figure IV.2.

For two correlation coefficients, Figure IV.3 illustrates the ratio of the conditional mean
value of x given y = 3.5 obtained with the bicubic model and the conditional mean value
assuming Gaussian variables. The random variable x is non-Gaussian with γ3,x = 2, γe,x =
6.6. The ratio increases rapidly as the distribution of y becomes left-skewed, i.e., γ3,y < 0,
while the distribution of x remains right-skewed. For the correlation coefficient ρxy = 0.4,
when the distribution of y is left-skewed and the couple (γ3,y, γe,y) is close to the monotone
limitation, the ratio takes large values up to 3.

Figure IV.3: Ratio of the conditional mean value of x given y = 3.5 obtained with the bicu-
bic model and the conditional mean value assuming Gaussian variables for two correlation
coefficients ρxy = −0.4, 0.4. The random variable x is non-Gaussian with γ3,x = 2, γe,x = 6.6.
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IV.9 Two-step adjustment method

Section IV.7 has highlighted that the equivalent static wind loads f (e,m) do not necessarily
satisfy the envelope value condition, nor the non-overestimation condition. These two issues
can be addressed with a two-step adjustment method described next.

If the envelope value condition is not fulfilled under the original ESWLs f (e,m), scaled
ESWLs are defined for this purpose by

(αf)(e,m) := α(e,m)f (e,m). (IV.9.1)

If the fulfillment of the non-overestimation condition fail under the original or scaled ESWLs,
an adjusted ESWLs is defined, satisfying the 2 conditions (IV.2.3)-(IV.2.4), by

(β ◦ αf)(e,m) := β(e,m) ◦ α(e,m)f (e,m). (IV.9.2)

The scaling coefficient α(e,m) is determined to ensure the envelope value condition while the
local coefficients β(e,m), an nt × 1 vector, adjust the scaled ESWLs (αf)(e,m) in order to ful-
fill the non-overestimation condition. For instance, if ESWLs are based on the conditional
sampling technique, the load scaling coefficient α(e,m) may be comprehended as the ratio
between the actual envelope and the one that would have been obtained from realisations.
The local coefficients β should slightly increase or decrease the components of the ESWL
without distorting too much the scaled ESWL. In other words, these coefficients have to
be as close to unity as possible but simultaneously ensure that sure the non-overestimation
condition is met. Computation of the local coefficients vector β(e,m) is formalized here as an-
other constrained nonlinear optimization. We want to hold the envelope value condition and
to satisfy the non-overestimation condition by finding the minimum of a problem specified
by

min
β(e,m)

∑nt
j=1

∣∣∣β(e,m)
j − 1

∣∣∣γβ , (IV.9.3)

under the linear constraints
+L

[
(β ◦ αf)(e,m)

]
− r(max) 6 0,

−L
[
(β ◦ αf)(e,m)

]
+ r(min) 6 0,∑nt

j=1 Lijβ
(e,m)
j α(e,m)f

(e,m)
j = r

(m)
i .

(IV.9.4)

The first two constraints in (IV.9.4) are the non-overestimation condition while the third one
corresponds to the envelope value condition. The objective is to obtain adjusted ESWLs as
close as possible to the scaled ones, i.e., β

(e,m)
j as close as possible to unity, which justifies

the choice of the cost function. Symbol γβ is a positive coefficient taken here equal to 2 as

an educated value. The magnitudes of α(e,m) and β(e,m) are used in the illustrations, third
example (see Section VI.5), to compare ESWL formulations in a Non-Gaussian framework.
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IV.10 Envelope reconstruction problem using ESWLs

IV.10.1 Normalization

The ESWLs, as for basic SWLs, require normalization before the envelope reconstruction.
A normalized ESWL (m ≡ min, m ≡ max) is computed for each ESWL using

f
(e,m,1)
(i) = α

(e,m,1)
(i) f

(e,m)
(i) , (IV.10.1)

where α
(e,m,1)
(i) is a positive coefficients applied to satisfy the acceptable overestimation of

the envelope (III.3.10) and the tangency condition. The tangency condition is such that the

static responses r
(e,m,1)
(i) under the ESWL f

(e,m,1)
(i) , defined as

r
(e,m,1)
(i) = Lf

(e,m,1)
(i) , (IV.10.2)

are somewhere tangent to the envelope amplified by the acceptable overestimation ε̂. Math-
ematically, we may write

∀i, (∃ j ∈ [1, nr] : r
(e,m,1)
j(i) = (1 + ε̂)r

(max)
j or r

(e,m,1)
j(i) = (1 + ε̂)r

(min)
j )

∧ (1 + ε̂)r
(min)
j 6 r

(e,m,1)
j(i) 6 (1 + ε̂)r

(max)
j ∀j ∈ [1, nr] .

(IV.10.3)

In a Gaussian framework: α
(e,min,1)
(i) = α

(e,max,1)
(i) and f

(e,min,1)
(i) = −f

(e,max,1)
(i) .

Case of adjusted equivalent static wind loads

A normalized adjusted ESWL (m ≡ min, m ≡ max) is computed for each adjusted ESWL,
using

f
(e,m,1)
(i) = (1 + ε̂)

(
β(e,m) ◦ α(e,m)f (e,m)

)
, (IV.10.4)

so that α
(e,m,1)
(i) = 1 + ε̂. It is emphasized that for adjusted ESWL, the envelope value

and non-overestimation conditions are fulfilled before normalization. The vector of static
responses r

(e,m,1)
(i) under the ESWL f

(e,m,1)
(i) is tangent to the envelope amplified by ε̂ for the

i-th response. In other words, (IV.10.3) degenerates into

∀i, r
(e,m,1)
i(i) = (1 + ε̂)r

(m)
i

∧ (1 + ε̂)r
(min)
j 6 r

(e,m,1)
j(i) 6 (1 + ε̂)r

(max)
j ∀j ∈ [1, nr] .

(IV.10.5)

IV.10.2 Ranking of the equivalent static wind loads

The ranking of the ESWLs in the ns−dimensional basis used for the ERP is based on how
a given ESWL is able to minimize the cost function (III.5.5) of the envelope

(
r(min), r(max)

)
and its current approximation

(
r̃

(min)
(k) , r̃

(max)
(k)

)
, recalled here

f
((

r̃
(min)
(k) , r̃

(max)
(k)

)
,
(
r(min), r(max)

))
:=
∣∣∣Ψγ

(k)

∣∣∣ . (IV.10.6)

The cost function aims at the minimization, at each iteration, of the overall error indicator.
Figure III.8 depicts the flowchart for the ERP with ESWLs.
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Gaussian framework The ns−dimensional vector space of static wind loads (III.3.1)
regrouping the selected ESWLs has an important feature if structural responses are Gaussian
processes. For k odd, the k-th and (k + 1)-th static wind loads are identical in distribution
and just differ by their sign

f
(s)
(k) = −f

(s)
(k+1). (IV.10.7)

For k odd, if the k-th static wind load is the j-th normalized equivalent static wind load
targeting the envelope max of the j-th structural response r

(max)
j

f
(s)
(k) = f

(e,max,1)
(j) , (IV.10.8)

then the (k + 1)-th static wind load is the j-th normalized equivalent static wind load

targeting the envelope min of the j-th structural response r
(min)
j

f
(s)
(k+1) = f

(e,min,1)
(j) , (IV.10.9)

since we have f
(e,min,1)
(j) = −f

(e,max,1)
(j) in a Gaussian context. This result holds because of the

symmetry of the envelope and if the reconstruction of each side of the envelope has the same
weight in the cost function.
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Figure IV.4: Flowchart of the envelope reconstruction problem with ESWLs.



IV.11. SUMMARY 113

IV.11 Summary

Equivalent static wind loads have been derived and directly used as a valuable tool in the
design of structures. Two mathematical expressions formulating them have been reviewed,
namely, the load-response correlation method and the hybrid method, both developed in a
Gaussian context.

With the aim to develop a formulation in the case of aerodynamic pressures and struc-
tural responses exhibiting non-Gaussianities, a conditional expected load method has been
established. Inspired by the LRC method in which Gaussian conditional probability den-
sities as well as their mean values are required, the concept of conditional expected static
wind load is derived. Such loading is based on the premise that it collects the average wind
loads conditioned upon recovery of the considered response. A parametric bicubic model of
non-Gaussian conditional probability density is proposed for this purpose.

The conditional expected load method formulates conditional expected static wind loads

1. for any linear structural behavior; background, hybrid and mostly resonant,

2. no matter the basis used for the analysis: nodal or hybrid (nodal-modal),

3. for non-Gaussian processes by a proper recourse to the bicubic model,

4. that are relevant even if there is not a clear separation of the timescales associated
with the background and resonant components of structural responses.

Figure IV.5 depicts the ways to compute conditional expected static wind load in a Gaussian
or non-Gaussian context.

Figure IV.5: Flowchart of the concept of conditional expected static wind load.
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V.1 Introduction

One main objective of this dissertation is to study and develop methods establishing efficient
bases of static wind loads {f (s)

(1) , f
(s)
(2) , . . . , f

(s)
(ns)
} for the envelope reconstruction problem.

At first glance, two basic static wind loads, the CPT loading modes and the modal iner-
tial loads, are good candidates for two limit structural behaviors, quasi-static and resonant,
respectively. As a matter of fact, no such candidate is available, see Table V.1, for hy-
brid structural behavior, i.e., when background and resonant components of the structural
responses are similar in magnitude. Moreover both basic SWLs do not adapt when the struc-
tural responses are non-Gaussian, i.e., when the envelope becomes asymmetric. Additionally,
they do not adapt to the specific set of structural responses of interest.

Structural behavior: Quasi-static Dynamic
(Hybrid)

Resonant

CPT loading modes X 7 7

Modal inertial loads 7 7 X

Table V.1: Envelope reconstruction problem with two sets of basic static wind loads. Domain
of applicability.

These shortcomings have motivated the study of a new concept of Principal Static Wind
Load. This kind of loading is obtained with a singular value decomposition of a larget set of
equivalent static wind loads.

Outline of the Chapter

In Section V.2, the singular value decomposition is reviewed and specific features of this
decomposition when applied on a matrix given by the product of two other matrices are
identified. This matrix decomposition is used in Section V.3 to derive the innovative concept
of principal static wind load. This Section also studies the peculiar circumstances which
determine if the PSWL basis degenerates into the CPT loading modes or MILs as limit cases
for quasi-static and resonant structural behaviors, respectively. Finally, Section V.4 provides
the elementary steps to implement PSWLs for the envelope reconstruction problem.
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V.2 Singular value decomposition

We are interested in the matrix factorization of a real rectangular m × n matrix A. There
are several ways to decompose such a matrix A into the product of matrices depending on
their expected properties. In the problem treated hereinafter, the factorization shall produce
two orthogonal matrices, a reason why we only detail next the singular value decomposition.

A real m × n matrix A can be expressed by a Singular Value Decomposition (SVD) of
the form

A = USVT, (V.2.1)

where U and V are m×r and n×r real matrices whose column vectors form an orthonormal
basis and S is an r × r square diagonal matrix. The diagonal elements of the square matrix
S are positive and ordered in decreasing values. They are known as singular values of A or
principal coordinates and denoted by λi, such that the matrix S reads

S = diag(λ1, . . . , λr), (V.2.2)

with λ1 > λ2 > . . . > λr. The number r corresponds to the number of non-zero singular
values of A, that is the rank of A. The singular value decomposition of A is a twofold
eigenvalue problem that can be written as[

AAT
]
Ui = λ2

iUi, ∀i ∈ [1, r], (V.2.3)

[
ATA

]
Vi = λ2

iVi, ∀i ∈ [1, r]. (V.2.4)

Hence, the columns of the matrices U and V collect the so-called left-singular vectors and
right-singular vectors of A, that are the eigenvectors of AAT and ATA, respectively.

Property

The left-singular vectors of an m ×2n matrix B = [A, −A] are identical to the left-singular
vectors of the matrix A. Since the product

[
BBT

]
reduces to

BBT = [A, −A] [A, −A]T = 2AAT, (V.2.5)

the left-singular vectors of the matrix B are derived from the eigenvalue problem

[
AAT

]
Ui =

λ2
i

2
Ui, ∀i ∈ [1, r], (V.2.6)

that corresponds to (V.2.3). Consequently to (V.2.6), the r singular values of B are scaled
by
√

2 in comparison with the r singular values of A. The ranks of B and A are equal, thus
both matrices have the same number of singular values.

Special case

Eventually, in our problem treated in the sequel, the matrix A is already given by the product
of two matrices, such as

A = PW, (V.2.7)
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where P is an m × q (q ≤ min(m,n)) real matrix and W is a q × n matrix of weighting
factors. Depending on the properties of P and W, three cases are studied next.

Case A If the columns of P form a set of linearly independent vectors (det(P) = 0) then
the number r of singular values of A is equal to q.

Case B If the columns of P and the rows of W do not form orthogonal bases, the left-
and right- singular vectors of the matrix A can be found by first computing the left-singular
vectors of the matrix W, via the eigenvalue problem

WWTZ = Z diag(ζ2
1 , . . . , ζ

2
r ), (V.2.8)

where Z is a q × q square matrix of left-singular vectors and diag(ζ2
1 , . . . , ζ

2
r ) collects the

eigenvalues. From (V.2.8), the product of the matrix W with its transpose is given by

WWT = Z diag(ζ2
1 , . . . , ζ

2
r ) ZT. (V.2.9)

The left-singular vectors of the matrix A are derived from (V.2.3). By inserting (V.2.7) and
using (V.2.9), the eigenvalue problem is written

[
AAT

]
U = U diag(λ2

1, . . . , λ
2
r),[

PWWTPT
]
U = U diag(λ2

1, . . . , λ
2
r),[

PZdiag(ζ2
1 , . . . , ζ

2
r )ZTPT

]
U = U diag(λ2

1, . . . , λ
2
r), (V.2.10)

and (V.2.10) is fulfilled if the left-singular vectors of the matrix A are given by

U = PZ, (V.2.11)

and the eigenvalues of the left-singular vectors of the matrices A and W are equal

diag(ζ2
1 , . . . , ζ

2
r ) = diag(λ2

1, . . . , λ
2
r). (V.2.12)

Inserting (V.2.11) into (V.2.7), the matrix A reads

A = UZTW. (V.2.13)

Comparing (V.2.13) with (V.2.1) we write

SVT = ZTW, (V.2.14)

and the right-singular vectors of the matrix A are expressed by

V = WTZS−1. (V.2.15)
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Case C If the columns of P and the rows of W both form orthogonal bases, i.e.,

PTP = diag (‖P1‖ , . . . , ‖Pq‖) ; WWT = diag (‖W1◦‖ , . . . , ‖Wq◦‖) , (V.2.16)

then they correspond to the left-singular and right-singular vectors of the matrix A, respec-
tively. By writing

U = Pdiag

(
1√
‖P1‖

, . . . ,
1√
‖Pq‖

)
, VT = diag

(
1√
‖W1◦‖

, . . . ,
1√
‖Wq◦‖

)
W, (V.2.17)

the square diagonal matrix S is given by

S = diag

(√
‖P1‖

√
‖W1◦‖, . . . ,

√
‖Pq‖

√
‖Wq◦‖

)
. (V.2.18)
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V.3 Principal static wind loads

This section presents the concept of Principal Static Wind Load. They are obtained with a
singular value decomposition of equivalent static wind loads. The approach followed to derive
them is discussed in Section V.3.1 in a general framework. Several features are highlighted
and under peculiar circumstances, the PSWL basis degenerates into the CPT loading modes
or the modal inertial loads. This is demonstrated in Sections V.3.2 and V.3.3, respectively.

V.3.1 Concept

Driven by the needs for static wind loads that could be derived for any kind of structural
behavior and for non-Gaussian structural responses, the concept of PSWL is derived here-
inafter.

The nt×nr ESWL matrices F(e,min) and F(e,max) consist of columns collecting the ESWLs
f

(e,m)
(i) , which were computed for all envelope values, minima and maxima, respectively. We

define an nt × 2nr matrix F(e) collecting all ESWLs

F(e) = [F(e,min) F(e,max)]. (V.3.1)

The PSWLs F(P) are defined as the left-singular vectors resulting from the singular value
decomposition (SVD) of F(e)

F(e) = F(P)SVT = F(P)W(P), (V.3.2)

where F(P) is an nt×2nr real matrix, the main diagonal of S gathers the principal coordinates
λ

(P)
i , and W(P) = SVT collects the weighting coefficients of each principal static wind load.

As such, the PSWLs F(P) form an orthonormal basis.

◦ It is emphasized that PSWLs are basic SWLs since they are not associated with spe-
cific structural responses and ordered by decreasing principal coordinates λ

(P)
i , see

Section III.4. All the methodology described in Chapter III to handle the envelope
reconstruction problem with basic SWLs is therefore relevant with PSWLs.

◦ Contrary to CPT loading modes and MILs, PSWLs are dependent upon the set of
structural responses to be reconstructed, though, they are not associated with specific
structural responses as ESWLs, making a notable difference. Indeed, the matrix F(e)

on which the SVD is applied only collects the ESWLs of structural responses considered
for the ERP.

◦ Principal static wind loads can be seen as a manner to sort out the most important
load patterns, out of a large set of ESWLs. They are the directors of an optimum
basis of loadings to represent any ESWL in F(e). The more structural responses are
correlated and tend to be Gaussian random processes, the more ESWLs have similar
distribution and the less PSWLs has to be retained for an appropriate reconstruction
of F(e).



V.3. PRINCIPAL STATIC WIND LOADS 121

◦ The LRC-, CST-, Hybrid-, CEL-, based ESWL formulation can be used to establish
the matrix F(e). The PSWLs is thence relevant for structures with quasi-static, hybrid
or resonant behaviors on the condition that the appropriate ESWL formulation has
been selected to compute all ESWLs.

◦ Under peculiar circumstances, see Sections V.3.2 and V.3.3, the PSWL basis degener-
ates into the CPT loading modes or MILs as limit cases for quasi-static and resonant
structural behaviors, respectively.

Gaussian case

In a Gaussian framework and for ESWLs that correspond to the conditional expected ones,
the following equality holds

F(e,min) = −F(e,max), (V.3.3)

and introducing (V.3.3) into (V.3.1), the matrix F(e) collecting all ESWLs can be written

F(e) = [F(e,min) − F(e,min)] = [−F(e,max) F(e,max)]. (V.3.4)

Consequently to the property exposed in Section V.2, the SVD with (V.3.2) in a Gaussian
framework would provide the same first nr principal static wind loads than the SVD of the
matrices F(e,min) or F(e,max). However, the last nr principal loads associated with the SVD
of the matrix F(e) have no meaning since the associated nr principal coordinates would be
equal to zero: Sii = 0 ∀i ∈ [nr + 1, 2nr].

Quasi-static structural behavior

In this case, principal static wind loads can be formulated with aerodynamic pressures rather
than nodal forces. The nl×nr ESWL matrices P(e,min) and P(e,max) consist of columns collect-
ing the ESWLs p

(e,m)
(i) , computed for all envelope values, minima and maxima, respectively.

We define an nl × 2nr matrix P(e) collecting all ESWLs

P(e) = [P(e,min) P(e,max)]. (V.3.5)

The PSWLs in terms of aerodynamic pressures are defined as the columns of the principal
nl × 2nr matrix P(P) resulting from the singular value decomposition of P(e)

P(e) = P(P)SVT = P(P)W(P). (V.3.6)

V.3.2 LRC-based ESWLs with CPT loading modes

From (IV.4.4), the nl×nr LRC-based ESWL matrix P(LC ,m) =
[
p

(LC ,m)
(1) ,p

(LC ,m)
(2) , . . . ,p

(LC ,m)
(nr)

]
obtained with CPT loading modes is expressed as

P(LC ,m) = P(C)W(C,m), (V.3.7)
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with P(C) an nl×ncpt (ncpt ≤ nr) matrix whose columns are orthonormal vectors (the retained
CPT loadings modes) and W(C,m) an ncpt × nr matrix of weighting factors. Since, the CPT
loading modes form an orthogonal basis, the case C studied in Section V.2 indicates that the
CPT loading modes are, in fact, the PSWLs

P(C) = P(P), (V.3.8)

if the rows of the matrix W(C,m) are orthogonal, a condition studied next.
The nr × ncpt matrix of structural responses under the CPT loading modes reads

R(C) = BP(C). (V.3.9)

Rewriting (IV.5.7) using (V.3.9), the weighting factors are expressed by

W(C,m) = Σc
[(

R(C))T diag(g(m) ÷ σrb)
]
, (V.3.10)

= Σc W̃(C,m), (V.3.11)

and the term in brackets in (V.3.10) represents the weighting factors, denoted by W̃(C,m) =(
R(C))T diag(g(m) ÷ σrb), before scaling by the eigenvalue of each CPT loading mode.

In general nothing guarantees that the structural responses provided by each CPT loading
mode are orthogonal vectors, too.

Let us assume them and n columns of the matrix R(C) are orthogonal vectors (assumption
1) (

R(C)
m

)T
R(C)
n = 0, ∀m 6= n (V.3.12)

the dot product between the m and n rows of the scaled matrix W̃(C,m) is written as

[
W̃(C,m)

(
W̃(C,m)

)T]
mn

=
nr∑
i=1

(
g

(m)
i

σrbi

)2

R
(C)
imR

(C)
in . (V.3.13)

The indices of structural responses for which the product R
(C)
imR

(C)
in is either positive or neg-

ative are collected such that

R
(C)
imR

(C)
in ≥ 0 ∀i = i+; R

(C)
imR

(C)
in < 0 ∀i = i−. (V.3.14)

Using (V.3.14), equation (V.3.13) is expressed as

[
W̃(C,m)

(
W̃(C,m)

)T]
mn

=
∑
i−=1

(
g

(m)

i−

σrb
i−

)2

R
(C)
i−mR

(C)
i−n +

∑
i+=1

(
g

(m)

i+

σrb
i+

)2

R
(C)
i+mR

(C)
i+n, (V.3.15)

and the m and n rows of the scaled matrix W̃(C,m) are orthogonal vectors if equation

∑
i−=1

(
g

(m)

i−

σrb
i−

)2

=
∑
i+=1

(
g

(m)

i+

σrb
i+

)2

, (V.3.16)
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is verified (assumption 2). Finally, since the matrix Σc is diagonal and if assumptions 1
and 2 are fulfilled, i.e., [

W̃(C,m)
(
W̃(C,m)

)T]
mn

= 0, (V.3.17)

the m and n rows of the matrix W(C,m) are orthogonal vectors as well.

The PSWL basis degenerates into the CPT loading modes as a limit case if the weighting
factors for each CPT loading mode are orthogonal vectors.
The maximum number of PSWLs is equal to the number of CPT loading modes retained for
computing the LRC-based ESWLs (Case A).

V.3.3 MIL-based ESWLs

From (IV.5.6), the nt × nr MIL-based ESWL matrix F(M,m) =
[
f

(M,m)
(1) , f

(M,m)
(2) , . . . , f

(M,m)
(nr)

]
obtained with modal inertial loads is expressed as

F(M,m) = F(M)W(M,m), (V.3.18)

with F(M) an nt × nm (nm ≤ nr) matrix whose columns are the modal inertial loads and
W(M,m) an nc× nr matrix of weighting factors. The case C studied in Section V.2 indicates
that the MILs are the PSWLs

F(M) = F(P), (V.3.19)

if the normal modes of vibration constitute an orthogonal basis and the rows of the matrix
W(M,m) are orthogonal, two conditions studied next.

The nr × nm matrix of structural responses under the MILs reads

R(M) = LF(M). (V.3.20)

Rewriting (IV.5.7) using (V.3.20), the weighting factors are expressed by

W(M,m) = Σq
[(

R(M)
)T

diag(g(m) ÷ σr)
]
, (V.3.21)

= ΣqW̃(M,m), (V.3.22)

and the term in brackets in (V.3.21) represents the weighting factors before left multiplication

by the covariance matrix of modal amplitudes and denoted by W̃(M,m) =
(
R(M)

)T
diag(g(m)÷

σr).

Assumption 1 First, under specific mass and stiffness distributions in the structure, the
normal modes of vibration constitute an orthogonal basis, i.e.,

ΦT
j Φk = 0 ∀ j 6= k. (V.3.23)

This property allows to write the stiffness matrix as

K = ΦΩΦT. (V.3.24)
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Inserting (V.3.24) into (II.5.11), the modal inertial loads are affine to the modal shapes

F
(M)
i = ΦΩΦTΦi = ΦiΩii, (V.3.25)

through the modal stiffness and therefore the MILs form an orthogonal basis, too(
F

(M)
j

)T
F

(M)
k = 0, ∀ j 6= k. (V.3.26)

Assumption 2 Nothing guarantees the structural responses provided by each MIL are
orthogonal vectors, too. Let us assume the m and n columns of the matrix R(M) are
orthogonal vectors (

R(M)
m

)T
R(M)
n = 0, (V.3.27)

Assumption 3 and the m and n rows of the matrix W̃(M,m) are also orthogonal vectors
if equation

∑
i−=1

(
g

(m)

i−

σri−

)2

=
∑
i+=1

(
g

(m)

i+

σri+

)2

, (V.3.28)

is verified.

Assumption 4 The dot product between the m and n rows of the matrix W(M,m) is given
by

[
W(M,m)

(
W(M,m)

)T]
mn

=
nr∑
i

(
nm∑
k

Σq
mkW̃

(M,m)
ki

)(
nm∑
l

Σq
nlW̃

(M,m)
li

)
. (V.3.29)

Hence, the more the m and n modes are uncorrelated with other modes, i.e.,

Rq
mk = 0 ifm 6= k , Rq

nk = 0 if n 6= k, (V.3.30)

then the more the m and n rows of the matrix W(M,m) are orthogonal.

The PSWL basis degenerates into the modal inertial load as a limit case if the weighting fac-
tors for each modal inertial load are orthogonal vectors and the modal shapes are orthogonal
vectors too.
The maximum number of PSWLs is equal to the number of modal inertial load retained for
computing the MIL-based ESWLs (Case A).

V.3.4 Hybrid-based ESWLs

From (IV.6.4), the nt×nr hybrid-based ESWL matrix F(LbMr,m) =
[
f

(LbMr,m)
(1) , . . . , f

(LbMr,m)
(nr)

]
obtained with CPT loading modes and modal inertial loads is expressed as

F(LbMr,m) = F(CM)W(LbMr,m), (V.3.31)
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with F(CM) =
[
F(C) F(M)

]
an nt× (ncpt +nm) (ncpt +nm 6 nr) matrix whose columns collect

the CPT loading modes, F(C) = AP(C), and the modal inertial loads. The weighting factors

are collected in an (ncpt +nm)×nr matrix W(LbMr,m) =
[
W(Lb,m) W(Mr,m)

]T
. In addition to

the aforementioned studied assumptions of (see Sections V.3.2 and V.3.3)

◦ orthogonality of the normal modes of vibrations,

◦ and orthogonality of the weighting factors W(Lb,m) and W(Mr,m),

the CPT loading modes and MILs are the PSWLs

F(CM) = F(P), (V.3.32)

if we have also

◦ orthogonality between the CPT loading modes and MILs(
F

(C)
j

)T
F

(M)
k = 0 ∀ j ∈ [1, ncpt], ∀ k ∈ [1, nm], (V.3.33)

◦ and orthogonality between the weighting factors of each CPT loading modes and modal
inertial loads[

W(Lb,m)
(
W(Mr,m)

)T]
jk

= 0 ∀ j ∈ [1, ncpt], ∀ k ∈ [1, nm]. (V.3.34)
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V.4 Envelope reconstruction problem using PSWLs

Figure V.1 depicts the required steps to derive the PSWL basis. First, the structural behav-
ior is appreciated and second, the suitable ESWL formulation, see Chapter IV, is selected.
Third, for each envelope value is computed the associated ESWL. At this stage, it is not nec-
essary to compute normalized ESWLs, see Section IV.10.1. Indeed, computing the singular
value decomposition of the matrix F(e) collecting ESWLs, step four, which are normalized or
not clearly provides the same PSWLs. The order of PSWLs may however differ if significant
normalization coefficients multiply the “original” ESWLs. It is therefore recommended to
compute only the original ESWLs for the singular value decomposition since the normaliza-
tion coefficients are not an inherent characteristic of the definition of an ESWL given by the
conditional expected load method.

Figure V.1: Required steps to compute PSWLs.

Since PSWLs are basic SWLs, the whole methodology described in Chapter III to handle
the envelope reconstruction problem is relevant. The PSWL basis, however, has the notable
feature to adapt to the specific set of structural responses considered for reconstruction.
Modal inertial loads or CPT loading modes do not have this feature at all. For that reason,
the flowchart of the envelope reconstruction problem with combinations of basic SWLs, see
Figure III.8, is adapted for PSWLs, see Figure V.2.

As illustrated in Chapter VI, the condition (III.3.12) on the overall reconstruction is
more easily fulfilled than the condition (III.3.13) on the acceptable underestimation. The
latter condition therefore usually drives the envelope reconstruction problem. For instance,
after applying the k-th static wind load, the overall reconstruction condition is satisfied and
only a small number of reconstructed structural responses has relative errors larger than the
acceptable underestimation ε̌t. We define n

(min)
r(k) and n

(max)
r(k) , the numbers of lower (negative)

and upper (positive) envelope values, with the indices i− and i+, respectively, that do not
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fulfill the acceptable underestimation ε̌t at the k-th iteration, i.e.,

ε
(min)

i−,(k) 6 ε̌t , ε
(max)
i+,(k) 6 ε̌t. (V.4.1)

The total number nr(k) of envelope values that have relative errors larger than the acceptable
underestimation ε̌t at the k-th iteration is given by

nr(k) = n
(min)
r(k) + n

(max)
r(k) . (V.4.2)

Through the iterations, if this number of structural responses nr(k) decreases slowly even
if either a large overestimation ε̂ is tolerated or a large number nq of PSWLs are combined,
a pertinent alternative is offered by the PSWL basis. This alternative, numbered 8 in the
flowchart, consists in selecting the ESWLs associated with the structural responses for which
the reconstruction has a too large relative error. A secondary basis of PSWLs is then
computed by applying the singular value decomposition on these selected ESWLs. This
secondary PSWL basis is used for the next iterations.
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Figure V.2: Flowchart of the envelope reconstruction problem. Combinations of PSWLs are
considered.
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Automatic procedure

An automatic procedure is described in Figure V.3. The number nq of PSWLs for combina-
tions is automatically selected such that∑nq

i λi∑r
i λi
≤ χP , (V.4.3)

with a minimum condition
nq = nr(k) if nr(k) ≤ 5. (V.4.4)

where λi is the i-th principal coordinate and χP is an arbitrary ratio. We recommend to set
this ratio χP in the range [0.9 0.99]. This is studied in the illustrations.

After p updatings of the PSWL basis, the number nr(k) of responses that do not fulfill
the acceptable underestimation may has become very small, e.g. 5 or 10. These responses
are expected to have a low indicator of correlation (III.3.9) and also slightly correlated with
the other over-underestimated responses at the k-th iteration. Consequently, the truncated
PSWL basis may no longer be efficient and the whole basis should be kept. This is the
purpose of the minimum condition (V.4.4)

Figure V.3 depicts the flowchart with combinations of basic SWLs to solve the envelope
reconstruction problem. At step 7 in the flowchart, if one of the two equations

R(k) = R(k−1), nr(k) = nr(k−1), (V.4.5)

is fulfilled, this means that the PSWL basis is no longer efficient to solve the envelope
reconstruction problem and has to be updated as described in step 8. At the end, the number
np corresponds to the number of PSWL bases required to solve the envelope reconstruction
problem.

This automatic procedure is especially relevant for complex envelope reconstruction prob-
lems, i.e., a problem with a low overall indicator of correlation, a large number of structural
responses and a low acceptable overestimation and underestimation of the envelope. This is
studied in Chapter VI.

Convergence of the envelope reconstruction problem with very small tolerance
on the acceptable relative errors

The smaller the acceptable overestimation and underestimation parameters are, the more
frequent the update of the PSWL basis is and the larger the number ns of static wind
loads is. In this framework, the automatic procedure may not succeed in solving (efficiently,
at least) the ERP. This is particularly true if the original ESWLs do not satisfy any of
the envelope value or non-overestimation conditions. This is especially expected in a non-
Gaussian framework.
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Figure V.3: Flowchart of the envelope reconstruction problem. Combinations of PSWLs and
basis updating are considered.
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V.5 Summary

A new concept of Principal Static Wind Load has been established. These loadings are
obtained with a singular value decomposition of equivalent static wind loads. The PSWLs
are relevant for structures with quasi-static, hybrid or resonant behaviors, see Table V.2,
on the condition that the appropriate ESWL formulation has been selected to compute the
ESWLs.

Structural behavior: Quasi-static Dynamic
(Hybrid)

Resonant

CPT loading modes X 7 7

Modal inertial loads 7 7 X
Principal static wind loads X X X

Table V.2: Envelope reconstruction problem with basic static wind loads. Domain of appli-
cability.

Contrary to the CPT loading modes and modal inertial loads, the PSWLs are dependent
upon the set of structural responses to be reconstructed. The general methodology to solve
the ERP described in Chapter III is improved with this distinctive feature formalized in
an automatic procedure. Its efficiency is illustrated with the second and third examples in
Chapter VI.

In Chapter VI is demonstrated that the PSWLs are better suited for an accurate recon-
struction of the envelope than the ESWLs, CPT loading modes or the MILs, as well.
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Chapter VI

Illustrations

VI.1 Introduction

This Chapter illustrates the different concepts discussed in this work with three examples.
The modal inertial loads (Section II.5), CPT loading modes (Section II.8.2), equivalent
static wind loads (Chapter IV) and principal static wind loads (Chapter V) are considered
to handle the envelope reconstruction problem stated in Chapter III by means of the general
methodology described in Section III.3. Table VI.1 collects the main characteristics of each
example. In the main part of the text, the envelope values (Section II.3) are computed for a
reference period of 10 min. Other reference periods could also be used. This is done in the
Appendix A for a reference period of 1 hour.

◦ First in Section VI.2, a four span bridge with pinned supports is analyzed under Gaus-
sian lift aerodynamic forces. The ERP focuses on the bending moment diagram. Equiv-
alent static wind loads are obtained from the conditional expected load method, derived
in Section IV.7. Several specific properties of this academic example allows us to show
that the PSWL basis degenerates into the CPT loading modes and the MILs as lim-
iting cases, see Sections V.3.2 and V.3.3, respectively. This example is adapted from
(Blaise and Denoël, 2013a).

◦ Second in Section VI.3, the methodology to handle the ERP is confronted with a
real structure: the large roof of the stadium at Lille, France. Aerodynamic pressures
are obtained with wind-tunnel measurements and the dynamic analysis is firstly done
in a Gaussian framework. The modal analysis and in particular the estimation of
modal correlation coefficients are done using the extended white noise approximation,
see Section II.7. As regards the ERP, the number of envelope values to reconstruct
is many times greater than in the first example and the overall correlation between
responses is also lower. In this case, the benefit from combinations of SWLs, by
applying the constrained nonlinear optimization algorithm described in Section III.5
is important. Moreover, the influence on the envelope reconstruction of an acceptable
range of overestimation ε̂ is investigated. This example is adapted from (Blaise and
Denoël, 2013b).

◦ Third in Section VI.4, the automatic procedure to handle the ERP with PSWLs is
implemented for the Lille’s stadium. The non-Gaussianity is taken into account to
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compute the peak factors. The three options detailed in Section III.3.5 to derive SWLs
ensuring no underestimation of the envelope are investigated.

◦ At last in Section VI.5, a rigid gable-roofed low-rise building is studied under aero-
dynamic pressures obtained with wind-tunnel measurements. Depending on the angle
of attack of the wind, the aerodynamic pressure field for this roof configuration is
known to exhibit mildly to strongly non-Gaussianities. In this context, equivalent
static wind loads are derived from the conditional expected load method used in com-
bination with the bicubic model derived in Section IV.8. These equivalent static wind
loads are compared with those obtained from the conditional sampling (Section IV.3)
and load-response correlation (Section IV.4) methods. The envelope value and non-
overestimation conditions, introduced in Section IV.2, are extensively studied for this
purpose. The impact on the PSWL basis of the methods used to compute the ESWLs
and effects on the efficiency to handle the ERP are assessed. This example is adapted
from (Blaise and Denoël, 2015; Blaise et al., 2016). Additionally, the automatic pro-
cedure to handle the ERP with PSWLs is implemented. The three options detailed
in Section III.3.5 to derive SWLs ensuring no underestimation of the envelope are
investigated as well.

Example 1 Example 2 Example 3
Four span

bridge
Lille’s stadium Low-rise gable roof

Section VI.2 VI.3 VI.4 VI.5 VI.5.5
Methodology General General Automatic General Automatic

Analysis Hybrid Hybrid Quasi-static
Framework Gaussian Gaussian Non-

Gaussian
Non-Gaussian

Pressures Model Wind-tunnel Wind-tunnel
ERP Bending 6 internal forces Bending moments

moments
ESWLs CEL-based Hybrid-based CST-, LRC-, CEL-
PSWLs X X X X

CPT, MILs X X - -
nr 121 7994 451
ρr [0.41, 0.47] 0.16 0.53
Rt 95% 95% 100% 95% 100%
ε̌t -10% -25% Variable -15% Variable
ε̂ 0% [0, 25, 50]% Variable [0, 15]% Variable
γ [1, 3, 5, 7] [1, 2, 3] 1 1 1

Table VI.1: Characteristics of the three examples.
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VI.2 Four span bridge

Description of the structure

A four span bridge with pinned supports is analyzed under wind actions. Each span has
a length of one hundred meters. The finite element model is an assembly of classical 2-D
beam elements with two DOFs per node (vertical displacement and rotation in this order).
The pinned supports are modeled as springs with a large stiffness K = 1010 N/m compared
to the bending stiffness EI/L3, see Figure VI.1. This trick is necessary to compute elastic
forces at each node with (II.4.3) in the CEL method since nodal wind forces are also applied
at the supports of the finite element model.

Figure VI.1: Finite element modeling of the pinned supports of the four span bridge as
springs with a large stiffness K.

Each span is uniformly divided into 30 finite elements in order to obtain a fine represen-
tation of the profiles of internal forces (each finite element has a length `e=3.33 m). The
number of DOFs is thus equal to nt =242. Table VI.2 gives the characteristics of the deck.

Width Section Inertia Young’s modulus Mass density Lift coefficient

B=30m 1m2 10m4 1e9N/m2 2500kg/m3 CL=-0.15

Table VI.2: Geometrical and mechanical characteristics of the deck.

The structural dynamic analysis of the wind effects is conducted in both modal (Section
II.6.2) and hybrid bases (Section II.6.3). Figure VI.2 depicts the vertical displacements of
the first six modes. These modes have frequencies below 1.5 Hz and are retained for the
modal analysis. They are normalized to a unitary maximum.

A very specific property of the modal basis (Section II.5) in this example is that, in
addition to be orthogonal vectors in the metric space of the stiffness and mass matrices
(K,M), they are also mutually orthogonal: ΦTΦ = I. This is explained by the uniform
mass distribution and bending stiffness of the bridge. This is not usually the case for real
bridges and the example treated here is rather academic. However, this specific feature is
not mandatory for the developments in the sequel.
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f1 = 0:31Hz f2 = 0:37Hz f3 = 0:49Hz

f4 = 0:63Hz f5 = 1:26Hz f6 = 1:36Hz

Figure VI.2: Modal vertical displacements and associated frequencies.

A Rayleigh damping matrix C is constructed as

C = αM + βK, (VI.2.1)

by imposing a damping coefficient ξ in the first and fourth modes. Three damping ratios
0.5%, 1.5% and 4.5% are used to study a resonant, an intermediate background-resonant
and a background-slightly resonant, behavior of the structure, respectively. The α and β
coefficients used in (VI.2.1) and obtained through (II.5.16) and (II.5.17), respectively, are
reported in Table VI.3.

ξ1 = ξ4

0.5% 1.5% 4.5%
α [rad/s] 0.013 0.04 0.12
β [s/rad] 0.0017 0.005 0.015

Table VI.3: The α and β coefficients used to build the Rayleigh damping matrix.

Description of the loading

For the sake of simplicity, the loading induced by the wind takes a basic form in this example.
More advanced models should obviously be considered for a real case study.

A one-dimensional longitudinal Gaussian velocity field with a mean velocity U equal to
30 m/s and a turbulence component u(t) with intensity equal to 16% is considered, that
gives a variance of σ2

u = 23.04 (m/s)2. The bridge is analyzed under the lift aerodynamic
force given by

F ′L =
1

2
ρCLB(U2 + 2Uu). (VI.2.2)

In (VI.2.2), the horizontal, vertical and torsional deck motions are not taken into account
to derive the relative velocity of the incoming wind. Additionally, the quadratic term of
the fluctuating component u is disregarded. The lift coefficient is arbitrarily chosen equal
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to -0.15 and other values (Denoël, 2009b) could have been chosen without modifying the
interpretation of the results.

Again, from a structural design viewpoint, the vertical component of the turbulence
should also be included in the turbulence model, as much as the aerodynamic drag force and
torque should also be considered.

The longitudinal turbulent component u of the velocity field is described by the following
(frequency-based) power spectral density (II.2.25) from Von Karman (1958)

f Su
σ2
u

=
4f̄Lu/z[

1 + 70.8
(
fLu/z

)
2
]

5/6
, (VI.2.3)

with σ2
u =

´
R+ Su df and where f is the frequency, f̄ = fz/U is the Monin coordinate,

Lu = 200m is the integral length scale of u and z = 100m is the height of the bridge above
ground level, see Figure VI.3.
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Figure VI.3: Von Karman power spectral density (left) and aerodynamic admittance for the
lift aerodynamic force (right).

The real part of the spanwise coherence function (II.2.37) of u between two points of the
deck separated by a length ` is modeled by a decreasing exponential (Vickery, 1970)

Γ = exp

(
−2fC`

2U

)
, (VI.2.4)

where C is the coefficient of coherence taken equal to 8. To the author’s knowledge, no
generic model exists for the imaginary part of the coherence function; it is therefore not
taken into account.

The average lift force per unit length, µL′ , is found as

µL′ =
1

2
ρCLBU

2 = −2531 N/m, (VI.2.5)

with ρ = 1, 25 kg/m3, CL and B, the mass density of the air, lift coefficient and deck’s width,
respectively, given in Table VI.2.

The nt × 1 vector of average nodal forces, µf ′ , is given by

µf ′ = AIµL′ , (VI.2.6)
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where A=diag(`e, 0, ..., `e, 0) is an nt×nt matrix that collects the coefficients which transform
the lift aerodynamic force per unit length to nodal vertical external forces for each element
with a mean equal to -8437 N. The PSD of the lift aerodynamic force is

SL(
1
2
ρUB

)
2

= 4C2
Lχ

2
LSu, (VI.2.7)

where χ2
L(ω) is the aerodynamic admittance proposed by Davenport (1962)

χ2
L =

2

[
7f
U
B − 1 + exp

(
−7f

U
B

)]
(

7f

U
B

)
2

, (VI.2.8)

shown in Figure VI.3 and the variance of the lift aerodynamic force is σ2
L=5.52·105 (N/m)2.

The aerodynamic admittance relates the lift aerodynamic forces to the oncoming wind ve-
locity.

Finally, the PSD matrix (II.2.42) of nodal forces is expressed as a function of the PSD of
the lift aerodynamic force through

Sf = AΓSLAT, (VI.2.9)

where Γ is an nt × nt matrix of aerodynamic admittances taking into account the imperfect
correlation of the turbulent component u of the velocity field using (VI.2.4). The variance
of nodal vertical forces is 6176·106 N2.

Buffeting analysis in the modal basis

The white noise approximation and the proposed extension (Section II.7) are performed to
compute the resonant contribution to the variances and covariance of modal amplitudes,
respectively. Additionally, the residual contribution (Section II.6.3) is computed to check
the timescale separation condition and so the relevancy of the white noise approximations,
i.e., the mixed background/resonant contribution is negligible and the residual contribution
mainly consists of the resonant one.

Standard deviation of modal amplitudes Figure VI.4 depicts the standard deviation
of modal amplitudes in modes 1 to 6 for the three studied damping cases: ξ=0.5%, 1.5%
and 4.5%. Only the first four modes are activated and thus retained for the hybrid analysis.
As expected, the timescale separation condition is fulfilled since the resonant and residual
contributions are almost similar.

Covariance of modal amplitudes The white noise approximation of the real part of the
coherence functions Γ

(Re,wn)
mn of generalized forces gives

Γ
(Re,wn)
mn =


1 0 0.01 0

1 0 0
Sym. 1 0

1

 .
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Figure VI.4: Standard deviation of the first six modal amplitudes.

In fact, there is only coherence between the first and third modes for which the white
noise approximation is negligible. Therefore the resonant contribution to the correlation
correlation coefficients ρ

(Re)
qr
mqr

n
can be neglected and the overall correlation coefficient between

modal amplitudes, see (II.7.31), simplifies as

ρ(d)
qmqn ' γbmnρgmgn ∀m 6= n. (VI.2.10)

The weighting function for the background contribution gives

ξ = 4.5% ξ = 1.5% ξ = 0.5%

γbmn =


0.53 0.63 0.67 0.72

0.75 0.8 0.85
Sym. 0.85 0.91

0.97

 ,


0.27 0.37 0.42 0.5
0.50 0.57 0.68
Sym. 0.65 0.77

0.92

 ,


0.11 0.17 0.21 0.3
0.25 0.31 0.44
Sym. 0.38 0.55

0.80

 ,
and the correlation matrix (II.2.41) of the generalized forces is equal to

ρgmgn =


1 0 0.36 0

1 0 0.6
Sym. 1 0

1

 .
Finally, the correlation matrix of the modal amplitudes reads

ξ = 4.5% ξ = 1.5% ξ = 0.5%

ρ
(d)
qmqn =


1 0 0.24 0

1 0 0.51
Sym. 1 0

1

 ,


1 0 0.15 0
1 0 0.4

Sym. 1 0
1

 ,


1 0 0.07 0
1 0 0.27

Sym. 1 0
1

 .
In this case, the larger the damping, the larger the background component, and the larger
the correlation between modal amplitudes.
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Determination of the envelope

In the sequel, it is chosen to focus exclusively on the bending moments but the same de-
velopments could be performed with several other types of responses (shear forces, stresses,
etc). The number nr of responses is thus equal to 121 and the bending moments are num-
bered from left to right, as for the spans and supports. The results hereinbelow are obtained
through a hybrid analysis —see Section II.6.3— and a full modal analysis —see Section II.5—
by means of the white noise approximation. The results associated with the hybrid basis are
used as reference. Figure VI.5 shows the bending moments under the uniform average lift
forces.
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Figure VI.5: Mean bending moment diagram.

Figure VI.6-(a,b) depicts the background contribution and the total standard deviation
of the bending moments, for the three studied cases.
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Figure VI.6: Background contribution and total standard deviations of the bending moments.

The background contribution is well-evaluated in the modal basis and the recourse to a
hybrid basis for the analysis is not obligatory. As expected, maxima occur in side spans at
the extremities and the resonant case, ξ = 0.5%, provides the largest standard deviation of
the bending moments.
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In order to evaluate the relative importance of the background σ2
rb

and resonant σ2
rr

contributions in the responses, the background-resonant ratio br = σ2
rb
/σ2

rr for each bending
moment is computed and given in Figure VI.7. These ratios show the same profile for the
three cases. Near supports, the background component for each case is more important than
in the span which simply results from the smallness of inertial forces near supports. This
Figure justifies the choice of three damping coefficients ξ = 4.5%, ξ = 1.5% and ξ = 0.5%.
Indeed, the 3 cases more or less correspond to br � 1, br ∼ 1 and br � 1.
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Figure VI.7: Background-resonant ratios of the bending moments.

Figure VI.8 illustrates the peak factor computed with (II.3.21). As the structural behavior
is more and more dynamic, the zero-up crossing, and thus the peak factor, increase.
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Figure VI.8: Peak factors, obtained using (II.3.21), for the three studied cases.

Figure VI.9 shows the averages of the absolute correlation coefficients defined by (III.3.9).
The more dynamic the structural behavior is, the more correlated the structural responses
are to each other. This is only true in the spans where the inertial forces mainly take place
and lower values of ρ̄ri are observed near the supports.
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Figure VI.9: Averages of the absolute correlation coefficients, obtained using (III.3.9), for
the three studied cases.
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Table VI.4 gives the overall indicator of correlation. From a quasi-static to a resonant
behavior of the structure, the overall correlation between the structural responses slightly
increases.

ξ 0.5% 1.5% 4.5%
ρr 0.47 0.43 0.41

Table VI.4: Overall indicator of correlation, defined in (III.3.8), for the three different damp-
ing ratios.

Figure VI.10 depicts the envelope and total envelope for the three studied cases which
we seek to reconstruct with static wind loads in the sequel.
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Figure VI.10: Envelope (upper graph) and total envelope (lower graph) bending moment
diagrams.
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VI.2.1 CEL-based ESWLs for the case ξ = 1.5%

In the illustrations hereinafter, we illustrate the conditional expected SWLs using the pro-
posed conditional expected load method, see Section IV.7. Figure VI.11 illustrates the
variance of elastic forces computed with formulation 1 in both hybrid and modal bases and
the variance of the wind forces is also shown. Although elastic forces comprise both trans-
verse forces and moments, only transverse forces are represented in Figure VI.11; the same
convention holds in the following figures.
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Figure VI.11: Variance of elastic forces computed with formulation 1, obtained using
(IV.7.20), in a hybrid basis and in a modal basis. The variance of applied wind forces
is also represented for comparison.

Large differences of variance are observable between the results obtained in a hybrid basis
and those obtained in a modal basis. Actually, the modal basis with the first four modes is
inappropriate to provide a relevant estimation of the variance of applied wind forces. This is
explained by the profile for the variance of applied wind forces and the shapes of the modal
inertial loads. The first four MILs are represented in Figure VI.12.
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Figure VI.12: Unity-scaled modal inertial loads (vertical forces).

Figure VI.13 illustrates the approximation of the variance of wind forces f with an in-
creasing number of modal inertial loads through

Σf ' KΦΣqb

ΦTKT. (VI.2.11)

Even with the first 50 MILs, there are large differences, especially close to the support where
the inertial forces are low. It is thus not recommended to use the formulation 1 in a full
modal basis.
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0 50 100 150 200 250 300 350 400

[k
N

2
]

2

4

6

8 <2
f : 6 MILs

<2
f : 35 MILs

<2
f : 50 MILs

<2
f : Wind forces

Figure VI.13: Approximation of the variance of vertical wind forces σf with an increasing
number of modal inertial loads using (VI.2.11).

In formulation 2, contributions of each covariance matrix in (IV.7.21) are studied next
and rearranged here as

Σfe −Σf =
(
Σfe
)

A
+
(
Σfe
)

B
+
(
Σfe
)

C
, (VI.2.12)

with
(
Σfe
)

A
= Σf ẍMT + MΣẍ f ,

(
Σfe
)

B
= MΣẍMT and

(
Σfe
)

C
= CΣẋCT. Figure

VI.14 shows contributions to the variance of elastic forces in formulation 2. As expected,
the magnitude of

(
Σfe

ii

)
B

is three orders of magnitude greater than
(
Σfe

ii

)
C

and thus the
contribution of the damping forces to the covariance matrix of elastic forces is negligible.
However, the diagonal elements of

(
Σfe
)

A
are only one order of magnitude lower than

(
Σfe

ii

)
B

and therefore can not be neglected.
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Figure VI.14: Contributions to the variance of elastic forces in formulation 2, obtained using
(IV.7.21) of the CEL method.



VI.2. FOUR SPAN BRIDGE 145

VI.2.2 Envelope reconstruction with ESWLs (ξ = 1.5%)

A usual option to solve the envelope reconstruction problem is to consider the equivalent
static wind loads computed here with the CEL method, see Section VI.2.1. The ESWLs are
ranked depending on how a given ESWL is able to minimize the cost function, defined in
(IV.10.6) and recalled here

f
((

r̃
(min)
(k) , r̃

(max)
(k)

)
,
(
r(min), r(max)

))
:=
∣∣∣Ψ(γ)

(k)

∣∣∣ ,
where Ψ

(γ)
(k) is the overall error indicator defined in (III.5.6). At each iteration, the ESWL pro-

viding the lower cost function is selected and applied to the structure following the flowchart
depicted in Figure IV.4. The acceptable overestimation ε̂ is set equal to zero and the parame-
ter γ to one. All ESWLs computed with the CEL method naturally satisfy the envelope value
condition (IV.2.3), see Table IV.2. Moreover, the non-overestimation condition (IV.2.4) is
verified and all CEL-based ESWLs fulfill it. Therefore, the ESWLs do not require normal-
ization —see Section IV.10.1— before using them for the envelope reconstruction problem.

Figures VI.15 and VI.16 show ESWLs and the iterative reconstruction of the envelope.
In a Gaussian context, the k-th and (k+ 1)-th static wind loads are identical in distribution
and just differ by their sign for k odd, see Section IV.10.2.

Both figures also illustrates the vertical displacement component of the influence line Li

corresponding to the i-th bending moment and the correlation coefficient ρri between the
i-th bending moment and the bending moment profile. Additionally, the structural responses
under each ESWL and the sequential reconstruction of the envelope r̃

(m)
k using the responses

for the considered bending moments are depicted. Finally, the relative errors between the
envelope and its reconstruction are given. As expected, the shapes of the loads are related to
the influence lines of the considered responses. Actually, the loadings do not match precisely
the influence line due to the coherence in the velocity field. It could be observed that the
less coherence there is, the more equivalent static wind loads match the influence lines of the
considered responses.

The figures illustrate that the response under a specific equivalent static wind load lies
within the envelope but also partially reconstructs the envelope at other sections than the
considered one, especially when the correlation is close to unity in magnitude, see (IV.3.2).

To sum up, the reconstructed envelope r̃
(m)
(k) monotonically converges towards the actual

envelope.
The methodology to solve the ERP —see Section III.3— and particularized for ESWLs

in Figure IV.4 is next applied. We choose an acceptable overall reconstruction Rt of 95 %
and an acceptable underestimation ε̌t of −10%. The overall reconstruction indicator R(k)

gives a global picture of the whole reconstruction of the bending moments in the bridge while
the largest relative error indicator ε̌(k) indicates the worse reconstruction of the envelope.
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Figures VI.17 and VI.18 depict the overall reconstruction and the largest relative error
indicators as a function of the number of load cases (from 1 to 35) derived by successive
applications of ESWLs. The evolution of R(k) features a slow monotonic increase and a

value of R(k) around 95% is obtained for n
(1)
s = 14 ESWLs. However, n

(2)
s =32 ESWLs are

necessary to satisfy the acceptable underestimation. Therefore, the number ns of ESWLs to
consider is equal to 32.
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Figure VI.17: Evolution of the overall reconstruction indicator R(k) as a function of the
number of ESWLs for the case ξ = 1.5%. (ERP parameters: ε̂ = 0%, γ = 1)
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Figure VI.18: Evolution of the largest relative error indicator ε̌(k) as a function of the number
of ESWLs for the case ξ = 1.5%. (ERP parameters: ε̂ = 0%, γ = 1)
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VI.2.3 PSWLs

A second option to solve the envelope reconstruction problem is to consider the principal
static wind loads obtained by singular value decomposition of the equivalent static wind
loads, see Chapter V.

The normalized cumulative summation of the principal coordinates Sii, see (V.3.2), for
the three cases are shown in Figure VI.19. The first four PSWL reproduce more than 90%
of the total sum of the principal coordinates.

Figure VI.19: Normalized cumulative summation of the principal coordinates of the principal
loadings.

The PSWLs require normalization —see Section III.4.1— before using them for the en-
velope reconstruction problem. Figure VI.20 shows the first four normalized principal static
wind loads (computed from the 121 ESWLs) and the corresponding responses for the three
studied cases. The left column in Figure VI.20, collects the static loads and responses for
a structure with a dominant background behavior (ξ = 4.5%). In this case, similar PSWLs
could be obtained by SVD of the ESWLs computed with the LRC method. The right column
in Figure VI.20 corresponds to a dominant resonant behavior (ξ = 0.5%). The middle col-
umn in Figure VI.20, represents the basis for an intermediate background-resonant behavior.
In that case, the singular value decomposition automatically provides loads with similarities
with both limit cases. Also, some loadings in the three cases have close shapes but differ
in position because of the behavior of the structure, see, for example, the first and second
loadings for the cases ξ = 0.5% and ξ = 1.5%. In general, PSWLs are no longer associated
with a specific bending moment but are the principal components, ordered by importance,
of all the ESWLs. This is confirmed by their symmetry with respect to the vertical center
of the bridge. Consequently, several extrema are recovered with a single loading.
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Figure VI.20: First four principal static wind loads F
(P,1)
i and corresponding static bending

moments R
(P,1)
i for the three considered structural behaviors (strongly to slightly damped).
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VI.2.4 Limiting cases of PSWLs: CPT loading modes and MILs

We now seek to understand how the proposed PSWL basis may degenerate into the basis
formed by the CPT modes and the MILs.

Limit quasi-static structural behavior

For the strongly damped (ξ = 4.5%) structural behavior, the resonant contribution is neg-
ligible and only the quasi-static contribution is considered. From (II.8.3), the covariance
matrix of wind forces is approximated with a reduced set of CPT loading modes as

Σp ' P(C)Σc
(
P(C))T . (VI.2.13)

Figure VI.21 illustrates the standard deviation of bending moments obtained when retain-
ing 1, 4 or 6 CPT loading modes in (VI.2.13). Bending moments derived in the hybrid basis
and in the nodal basis neglecting the resonant contribution are also shown for comparison.
The first 6 CPT loading modes are retained since standard deviations of bending moments
are almost recovered, i.e., the higher CPT loading modes bring minor contributions.
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Figure VI.21: Standard deviation of bending moments derived in the hybrid basis and in the
nodal basis assuming a quasi-static structural behavior. Also, results obtained with 1, 4 and
6 CPT loading modes retained to build the covariance matrix of aerodynamic pressures in a
quasi-static analysis.

The establishment of ESWLs is done with the LRC method using the first six CPT
loading modes (e ≡ LC)

F(LC ,m) = F(C)W(C,m), (VI.2.14)

see Section IV.4. Figure VI.22 shows the CPT loading modes with the associated static
responses. The corresponding PSWLs are depicted in the second column. Also PSWLs com-
puted in Section VI.2.3 for the strongly damped case (ξ = 4.5%) are shown for comparison.
As a matter of fact, the two bases are nearly identical and this is explained thanks to the
developments of Section V.3.2.
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First, several structural responses under each CPT loading mode are orthogonal

(∥∥R(C)
m

∥∥−1
R(C)
m

)T (∥∥R(C)
n

∥∥−1
R(C)
n

)
=


1 0 −0.4 0 0.49 0

1 0 0.39 0 −0.01
1 0 −0.76 0

1 0 −0.87
Sym. 1 0

1

 ,

and thus the first assumption (V.3.12) is nearly fulfilled. Besides, each CPT loading mode
contains positive and negative parts that are symmetric with respect to the center of the
bridge, except the first one. It appears that standard deviations and peak factors of bending
moments investigated along the bridge present also a symmetry with respect to the center of
the bridge, see Figures VI.6 and VI.8, respectively. Therefore the second assumption (V.3.16)
is satisfied. Finally, the scalar products of the weighting factors for each CPT loading mode
is found as

(∥∥W(C)
m◦
∥∥−1

W(C)
m◦

)(∥∥W(C)
n◦
∥∥−1

W(C)
n◦

)T
=


1 0 −0.14 0 0.36 0

1 0 0.22 0 0.08
1 0 −0.7 0

1 0 −0.91
Sym. 1 0

1

 ,

and even if some weighting factors are not perfectly orthogonal, the magnitude of their
scalar products remain small and therefore the PSWLs have similar distributions to the
CPT loading modes: F(P) ' F(C).
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Limit quasi-static Limit quasi-static ξ = 4.5%
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(CPT-based ESWLs) (CEL-based ESWLs)

F
(C;1)
1 F

(P;1)
(1) F

(P;1)
1

R
(C;1)
1 R

(P;1)
(1) R

(P;1)
1

F
(C;1)
2 F

(P;1)
(2) F

(P;1)
2

R
(C;1)
2 R

(P;1)
(2) R

(P;1)
2

F
(C;1)
3 F

(P;1)
(3) F

(P;1)
3

R
(C;1)
3 R

(P;1)
(3) R

(P;1)
3

F
(C;1)
4 F

(P;1)
(4) F

(P;1)
4

R
(C;1)
4 R

(P;1)
(4) R

(P;1)
4

Figure VI.22: First four CPT loading modes F
(C,1)
i and PSWLs F

(P,1)
i for the quasi-static

(CPT-based ESWLs) and strongly damped (CEL-based ESWLs) cases. The corresponding
bending moments are also depicted.



154 CHAPTER VI. ILLUSTRATIONS

In the previous case, the basis of PSWLs tends to the CPT loadings modes partly due to
the symmetry of the peak factor g(m) and standard deviation σrb diagrams of the bending
moments with respect to the center of the bridge. PSWLs are next derived from ESWLs
only computed for half of the bending moments situated from left to the middle of the bridge
(numbered 1 to 60) and the corresponding bending moments under each CPT loading mode
are no longer orthogonal

(∥∥R(C)
m

∥∥−1
R(C)
m

)T (∥∥R(C)
n

∥∥−1
R(C)
n

)
=


1 0.89 −0.36 0.16 0.49 0.17

1 −0.72 0.39 0.68 −0.01
1 −0.75 −0.74 0.46

1 0.6 −0.87
Sym. 1 −0.14

1

 ,

and the scalar products of the weighting factors for each CPT loading mode is found as

(∥∥W(C)
m◦
∥∥−1

W(C)
m◦

)(∥∥W(C)
n◦
∥∥−1

W(C)
n◦

)T
=


1 0.82 −0.13 −0.03 0.36 0.25

1 −0.65 0.22 0.68 0.08
1 −0.66 −0.69 0.43

1 0.31 −0.91
Sym. 1 0.08

1

 .

Therefore the PSWLs basis does not degenerate into the CPT loading modes: F(P) 6= F(C),
see Figure VI.23.
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Figure VI.23: First four CPT loading modes F
(C,1)
i and PSWLs F

(P,1)
i for the quasi-static

(CPT-based ESWLs) case. The corresponding bending moments are also depicted. PSWLs
are derived from ESWLs computed only for half of the bending moments situated from left
to the middle of the bridge (numbered 1 to 60).
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Slightly damped structural behavior

For the slightly damped (ξ = 0.5%) structural behavior, the structural analysis is performed
in the modal basis. The modal analysis is done with the first four modes. Standard deviations
of bending moments derived in the hybrid basis and in the modal basis are shown in Figure
VI.24 for comparison.
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Figure VI.24: Standard deviation of bending moments derived in the hybrid basis and in the
modal basis assuming a resonant structural behavior.

The MIL-based ESWLs are obtained with the first four modal inertial loads (e ≡M)

F(M,m) = F(M)W(M,m), (VI.2.15)

see Section IV.5. Figure VI.25 shows the MILs with the associated static responses. PSWLs
are based on the ESWLs computed with (VI.2.15) and are depicted in the second column
in Figure VI.25. Also PSWLs computed in Section VI.2.3 for the slightly damped case
(ξ = 0.5%) are shown for comparison. As a matter of fact, the bases are nearly similar and
this is explained thanks to the developments of Section V.3.3.

First, in this conceptual example with uniform mass and bending stiffness, the normal
modes of vibration constitute an orthogonal basis, i.e.,

(Φj)
T Φk = 0 ∀ j 6= k, (VI.2.16)

and thus the first assumption (V.3.26) is fulfilled. Next, the bending moments under each
MIL constitute an orthogonal basis

(∥∥R(M)
m

∥∥−1
R(M)
m

)T (∥∥R(M)
n

∥∥−1
R(M)
n

)
=


1 0 0 0

1 0 0
Sym. 1 0

1

 ,
and thus the second assumption (V.3.27) is entirely fulfilled. Besides, each MIL contains
positive and negative parts that are symmetric with respect to the center of the bridge. It
appears that standard deviations and peak factors of bending moments investigated along
the bridge present also a symmetry with respect to the center of the bridge, see Figures VI.6
and VI.8, respectively. Therefore the third assumption (V.3.28) is satisfied.
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The correlation matrix of modal amplitudes is given by

Rq =


1 0 0.07 0

1 0 0.27
Sym. 1 0

1

 , (VI.2.17)

indicating that the modes are almost uncorrelated, nearly satisfying the fourth assumption
(V.3.30) and finally, the scalar products of the weighting factors for each MIL is found as

(∥∥W(M)
m◦
∥∥−1

W(M)
m◦

)(∥∥W(M)
n◦
∥∥−1

W(M)
n◦

)T
=


1 0 −0.18 0

1 0 −0.14
Sym. 1 0

1

 ,
and even if some weighting factors are not perfectly orthogonal, the magnitude of their scalar
products remains small. Therefore the PSWLs basis degenerates into the MILs: F(P) ' F(M).

In the previous case, the basis of PSWLs tends to the MILs partly due to the symmetry
of the peak factor g(m) and standard deviation σr diagrams of the bending moments with
respect to the center of the bridge. If PSWLs are derived from ESWLs only computed for
half of the bending moments situated from left to the middle of the bridge (numbered 1 to
60), the bending moments under each MIL are no longer orthogonal

(∥∥R(M)
m

∥∥−1
R(M)
m

)T (∥∥R(M)
n

∥∥−1
R(M)
n

)
=


1 0.78 0 −0.18

1 0.52 −0.03
Sym. 1 0.68

1

 ,
and the scalar products of the weighting factors for each MIL is found as

(∥∥W(M)
m◦
∥∥−1

W(M)
m◦

)(∥∥W(M)
n◦
∥∥−1

W(M)
n◦

)T
=


1 0.65 −0.18 −0.19

1 0.49 −0.16
Sym. 1 0.56

1

 .
Therefore the PSWL basis does not degenerate into the MILs: F(P) 6= F(M), see Figure
VI.26.
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Figure VI.25: First four MILs F
(P,1)
i and PSWLs F

(P,1)
i (MILs-based ESWLs and CEL-based

ESWLs). The corresponding bending moments are also depicted. Studied case: ξ = 0.5%.
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Figure VI.26: First four MILs F
(P,1)
i and PSWLs F

(P,1)
i (MILs-based ESWLs). The corre-

sponding bending moments are also depicted. PSWLs are derived from ESWLs computed
only for half of the bending moments situated from left to the middle of the bridge (numbered
1 to 60).
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VI.2.5 Envelope reconstruction with PSWLs ξ = 1.5%

This section assesses principal static wind loads as potential candidates for the envelope re-
construction problem. Figure VI.27 illustrates the straightforward solution which is to apply
successively the PSWLs without combination, see Section III.4 and applying the flowchart
depicted in Figure III.7. The first three principal loadings contribute significantly to the re-
construction of the envelope. Actually, after consideration of the first three principal loadings,
any additional principal loading just provides a marginal contribution. The reconstruction
is fair, except in the side spans with relative errors up to -25%.

f
(s)
(1) = F

(P;1)
1 f

(s)
(3) = F

(P;1)
2 f

(s)
(5) = F

(P;1)
3

r
(s)
(1) r

(s)
(3) r

(s)
(5)

~r
(m)
(2) ~r

(m)
(4) ~r

(m)
(6)

-100

-50

0
"
(max)
(2)

[%]
-100

-50

0
"
(max)
(4)

[%]
-100

-50

0
"
(max)
(6)

[%]

f
(s)
(7) = F

(P;1)
4 f

(s)
(9) = F

(P;1)
5 f

(s)
(11) = F

(P;1)
6

r
(s)
(7) r

(s)
(9) r

(s)
(11)

r̃
(m)
(8) r̃

(m)
(10) r̃

(m)
(12)

-100

-50

0
"
(max)
(8)

[%]
-100

-50

0
"
(max)
(10)

[%]
-100

-50

0
"
(max)
(12)

[%]

Figure VI.27: Principal static wind loads f
(s)
(k) = F

(P,1)
i (vertical forces at every node), static

bending moments r
(s)
(k) = R

(P,max)
i , reconstructed envelope r̃

(m)
(k) and relative errors of the

reconstructed envelope (max side) ε
(max)
(k) for the case ξ = 1.5%. (ERP parameters: ε̂ = 0%,

γ = 1)

Figure VI.28 illustrates the second option where combinations of a subset of PSWLs are
considered, here nq = 4 for the illustration. The combination coefficients are shown and
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derived from the constrained nonlinear optimization algorithm, see Section III.5 and Figure
III.8. As with ESWLs, the acceptable overestimation ε̌ is set equal to zero and the parameter
γ to one.
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Figure VI.28: Combinations of the first four principal static wind loads f
(s)
(k) (transverse forces

at every node), static bending moments r
(s)
(k), reconstructed envelope r̃

(m)
(k) and relative errors

of the reconstructed envelope (max side) ε
(max)
(k) for the case ξ = 1.5%. (ERP parameters:

ε̂ = 0%, γ = 1)
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For a same number of load cases, the reconstruction of the envelope performs better by
considering combinations of the first four PSWLs than applying PSWLs without combina-
tion, see Figures VI.27 and VI.28, respectively.

The number of PSWLs that should be considered for combinations may be appreciated
with the reconstruction indicatorR(k) and the largest relative error indicator ε̌(k), see Figures
VI.29 and VI.30. Results obtained with ESWLs, PSWLs (no combination) and the first two,
four, six and eight combined PSWLs are shown for comparison.
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Figure VI.29: Evolution of the reconstruction indicator R(k) as a function of the number of
load cases for the case ξ = 1.5%. (ERP parameters: ε̂ = 0%, γ = 1).
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Figure VI.30: Evolution of the largest relative error indicator ε̌(k) as a function of the number
of load cases for the case ξ = 1.5%. (ERP parameters: ε̂ = 0%, γ = 1)

After 35 load cases, applying successively PSWLs without combination does not provide
the acceptable reconstruction Rt nor the acceptable underestimation ε̌t. It is therefore not
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enough to only implement this straightforward solution and combinations of PSWLs have to
be considered instead.

After 8 combinations of the first two PSWLs, considering more and more combinations
do not bring any improvement to the reconstructed envelope with R(k>8) ' 92.5% . R(∞)

and ε̌(k>8) ' −53% . ε̌(∞). However, after n
(1)
s =8, 6 and 5 and n

(2)
s = 19, 15 and 12

combinations of the first nq =4, 6 and 8 PSWLs, the acceptable reconstruction and largest
relative error indicators are satisfied, respectively. At this stage, two approaches to choose
the number nq to consider may be pointed out. On the one hand, the more nq PSWLs are
considered, the less ns load cases are required. On the other hand, the more nq PSWLs are
considered, the less the decrease on the number of load cases ns and the more time-consuming
computations are. In other words, a lower number nq may be sought for sake of simplicity
even if it means a slightly larger number of load cases.

It is emphasized that with combinations of PSWLs, at least with nq > 2, the reconstruc-
tion is faster than with ESWLs, i.e., for a same number of load cases, the reconstruction is
better in terms of overall reconstruction and relative errors.

Parameter γ

For both kinds of static wind loads considered so far, i.e., equivalent and principal, the num-
ber of SWLs n

(2)
s to fulfill the acceptable underestimation is approximately more than twice

the number n
(1)
s necessary to check the acceptable overall reconstruction. With the purpose

of decreasing this difference, the parameter γ in the cost function (III.5.11) is increased, see
Section III.5. Its influence on R(k) and ε̌(k) can be appreciated with Figures VI.31 and VI.32,

respectively. As expected, an increase of γ corresponds to an increase of n
(1)
s .
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Figure VI.31: Evolution of the reconstruction indicator R(k) as a function of the number of
load cases for the case ξ = 1.5%. (ERP parameters: ε̂ = 0%, γ variable).
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Figure VI.32: Evolution of the largest relative error indicator ε̌(k) as a function of the number
of load cases for the case ξ = 1.5%. (ERP parameters: ε̂ = 0%, γ variable)

The impact on n
(2)
s is however more difficult to assess with Figure VI.32 and so Table

VI.5 collects n
(1)
s and n

(2)
s for the four values of γ investigated. Surprisingly, an increase of

γ does not necessary corresponds to a decrease of n
(2)
s : this make the optimization of this

parameter rather difficult.
The larger γ is, the more the SWL reconstructing the envelope value associated with the

largest relative error is selected. However this can be counterproductive since with a lower
γ, another SWL, reconstructing, for instance, several envelope values with slightly lower
relative errors would have been selected. This is one possible explanation. At the end, it is
recommended not to blindly increase the parameter γ and set it to one as an educated value.

In any case, the benefit is rather low. For ESWLs, ns = 32 to 26 with γ = 5 and for
PSWLs (nq = 6), ns = 15 to 12 with γ = 3.

γ=1 γ=3 γ=5 γ=7

ESWLs
n

(1)
s 14 19 16 16

n
(2)
s 32 > 35 26 28

PSWLs (nq = 6)
n

(1)
s 6 8 9 12

n
(2)
s 15 12 18 16

Table VI.5: Number of SWLs n
(1)
s and n

(2)
s with ESWLs and PSWLs (combinations, nq = 6).

(ERP parameter: ε̂ = 0%).
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VI.2.6 Comparison of envelope reconstruction with combinations
of basic static wind loads

This section assesses the envelope reconstruction efficiency with combinations of a subset of
CPT loading modes, MILs and PSWLs. For the three damping coefficients, Figures VI.33,
VI.35, VI.37 and VI.34, VI.36, VI.38 depict the reconstruction indicator R(k) and the largest

relative error indicator ε̌(k), respectively. Table VI.6 collects n
(1)
s and n

(2)
s for the three cases.

Globally, with nq = 2 and nq = 4, the PSWLs perform better than the CPT loading modes
or the MILs: the actual envelope is better reproduced, no matter the damping coefficient.
However, with nq = 6, the three bases provide close numbers n

(2)
s of load cases to fulfill the

acceptable underestimation.
As expected, the CPT loading modes are better suited when the structural behavior

tends to be quasi-static. Surprisingly, the MILs provide approximately the same range of
reconstruction of the envelope no matter the damping coefficient. This is explained by the
specific property of the normal modes of vibration which constitute, in this example, an
orthogonal basis, see (VI.2.16). This property allows to write the stiffness matrix as

K = ΦΩΦT, (VI.2.18)

which means that the normal modes of vibration are also the eigenvectors of the stiffness
matrix K and are thus well-suited to compute quasi-static structural responses, as well.

ESWLs MILs CPT PSWLs
nq - 2 4 6 2 4 6 2 4 6

ξ = 4.5%

n
(1)
s 15 - 11 7 - 9 8 - 8 7

n
(2)
s 34 - - 18 - 12 16 - 18 12

ξ = 1.5%

n
(1)
s 14 - 9 7 - 12 8 - 8 6

n
(2)
s 32 - - 20 - - 14 - 19 15

ξ = 0.5%

n
(1)
s 14 - 8 5 - - 8 - 10 6

n
(2)
s 32 - 18 14 - - 14 - 16 14

Table VI.6: Number of SWLs n
(1)
s and n

(2)
s with ESWLs, MILs, CPT loading modes and

PSWLs. (ERP parameter: ε̂ = 0%, γ = 1).
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Figure VI.33: Evolution of the reconstruction indicator R(k) as a function of the number
of load cases for the case ξ = 4.5%. Combinations of the first 2, 4 and 6 basic SWLs are
considered. (ERP parameters: ε̂ = 0%, γ = 1).
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Figure VI.34: Evolution of the largest relative error indicator ε̌(k) as a function of the number
of load cases for the case ξ = 4.5%. Combinations of the first 2, 4 and 6 basic SWLs are
considered. (ERP parameters: ε̂ = 0%, γ = 1).
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Figure VI.35: Evolution of the reconstruction indicator R(k) as a function of the number
of load cases for the case ξ = 1.5%. Combinations of the first 2, 4 and 6 basic SWLs are
considered. (ERP parameters: ε̂ = 0%, γ = 1).
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Figure VI.36: Evolution of the largest relative error indicator ε̌(k) as a function of the number
of load cases for the case ξ = 1.5% . combinations of the first 2 and 3 basic SWLs are con-
sidered. Combinations of the first 2, 4 and 6 basic SWLs are considered. (ERP parameters:
ε̂ = 0%, γ = 1).
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Figure VI.37: Evolution of the reconstruction indicator R(k) as a function of the number
of load cases for the case ξ = 0.5%. Combinations of the first 2, 4 and 6 basic SWLs are
considered. (ERP parameters: ε̂ = 0%, γ = 1).
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Figure VI.38: Evolution of the largest relative error indicator ε̌(k) as a function of the number
of load cases for the case ξ = 0.5% . combinations of the first 2 and 3 basic SWLs are con-
sidered. Combinations of the first 2, 4 and 6 basic SWLs are considered. (ERP parameters:
ε̂ = 0%, γ = 1).
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VI.2.7 Summary

In order to get accustomed to the envelope reconstruction problem, the reconstruction of
the bending moment diagram of a four span bridge under lift aerodynamic forces has been
considered. Several bases of SWLs have been used for comparison and the principal findings
are:

◦ Applying successively the basic SWLs without combination does not provide a satis-
factory envelope reconstruction;

◦ some combinations of a subset of basic SWLs based on the constrained non-linear opti-
mization problem, developed in Chapter III provides a faster and better reconstruction
of the envelope provided that a sufficiently large subset of SWLs is considered for com-
binations;

◦ combinations of CPT loading modes and the MILs are better suited for an accurate
reconstruction of the envelope than the ESWLs, as well as combinations of the PSWLs
no matter the structural behavior.
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VI.3 Lille’s stadium (unique peak factor)

VI.3.1 Description of the structure

The envelope reconstruction problem is now illustrated for the case of a large stadium with
a retractable roof, known as “Stade Pierre-Mauroy”, in Lille, France. Figure VI.39 shows
an aerial view of the stadium with its roof in the fully open configuration. A part of its
design has been conducted by the design office Greisch, at Liège, Belgium. The design office
is acknowledged for having provided the finite element model used for the illustrations. The
finite element model has 4940 elements, 2548 nodes and nt =15288 DOFs.

Figure VI.39: Aerial view of the “Stade Pierre-Mauroy” (courtesy of www.info-stades.fr).

Figure VI.40 shows three different parts of the roof: the retractable one, above the
ambulatories and above the grandstands. The roof covering is composed of polycarbonate
plates.

Figure VI.40: Different parts of the roof (image from FinelG (1999)).
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The retractable roof is modeled with plates in the finite element model. Figure VI.41
shows different views of the finite element model of the load-bearing system mainly composed
of steel elements.

Figure VI.41: Different views of the finite element model of the load-bearing system (image
from FinelG (1999)).

Two longitudinal large beams of 205 m span, see Figure VI.42-(a), support the retractable
roof and the roof above grandstands. These beams are trusses, about 15 meters height, which
are isostatic and pre-stressed by cables. Two cross-way beams support the South and North
parts of the roof above grandstands and are connected with these longitudinal beams. These
cross-way beams are also trusses with a height that reaches 8 m for a span of 80 m, see
Figure VI.42-(b).

Figure VI.42: (a) Longitudinal large beams (in red) and (b) cross-way beams (in red) (image
from FinelG (1999)).
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Figure VI.43 shows the load-bearing system for the coverage of the stands (a)-(b) as well
as the ambulatories (c) supported by columns (d) situated at the top of the grandstands.
The beams are approximately spaced by 13.4 meters.

Figure VI.43: In red, beams of the (a)-(b) roof-bearing system, (c) ambulatory-bearing
system and (d) Columns (image from FinelG (1999)).

There are four types of purlins: the ones (1) above the ambulatory in steel, (2) above the
stands in wood, (3) those necessary for the retractable roof and (4) those necessary for the
bracing system, see Figure VI.44.

Figure VI.44: (a) Top view and (b) perspective view of different purlins (image from Blaise
(2010)).

The overall horizontal stability of the roof is ensured by a bracing system shown in
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Figure VI.45. This system transfers the horizontal forces to two vertical bracings in each
principal direction. The bracing elements are metal tubes. The configuration does not
provide clamping during elongations or contractions due to thermal stresses in the structural
elements.

Figure VI.45: (a) Top view and (b) perspective view of the bracing system (image from
FinelG (1999)).

VI.3.2 Description of the wind loading

The aerodynamic loading characterization has been realized by wind tunnel measurements
at the “Centre Scientifique et Technique du Bâtiment” (CSTB) in Nantes, France. The
CSTB is acknowledged for having provided the measurements in wind tunnel used for the
illustrations. Figure VI.46 depicts the 1/200 scaled model in the wind tunnel.

Figure VI.46: Model of the stadium in the wind tunnel. (a) View of the exit of the turbine, (b)
block to create the wind velocity profile, (c) and (d) surrounding buildings, (e) surrounding
woods. Also published in (Blaise and Denoël, 2011b), courtesy of CSTB.
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The wind targets properties of the atmospheric boundary layer are simulated as pre-
scribed in the Eurocodes (Eurocode, 1991a) and its French national appendix. Notably, the
targeted wind loads correspond to the Service Limit State ones and a IIIa category terrain
is appropriate to represent the surrounding of the stadium. The mean velocity recorded at
the top of the stadium vm = 28.3 m/s accurately corresponds to the target value and thus
to an expected reference velocity pressure pmean = 491.7 Pa.

The velocity and time scales are 1/2.98 and 1/67 respectively. The model is assumed
to be infinitely rigid. The surrounding buildings and trees are also modeled to simulate a
realistic environment. The instrumentation of the scaled model required approximately three
hundred and fifty synchronous pressure sensors, sampled at 200 Hz, which corresponds to
2.94 Hz in full scale (or a time step equal to 0.342 seconds). Each measurement lasts about
105 minutes full scale, i.e., approximately ten times as much as the typical conventional
requirements, which allows for some statistical treatment.

In a first rank context, pressures recorded at different locations in space are regarded as
random variables (and therefore independently from their frequency content). The analysis
of the maps of the mean and the standard deviations of the pressure coefficients offers a basic
understanding of the wind flow around the structure and thence is of necessary interest for
the wind tunnel engineers as well as the designing engineers.

Pressure coefficients are referenced using the mean velocity recorded at the top of the
stadium vm; they are defined from the aerodynamic pressures by

cp′ =
p′

1

2
ρv2

m

, (VI.3.1)

where ρ = 1.225 kg/m3 is the air density. A positive pressure coefficient means that aerody-
namic pressure acts towards the inner of the stadium while a negative coefficient indicates
suction (with reference to the atmospheric pressure). They are illustrated for the considered
application in Figure VI.47 for a wind coming East: 75° wind direction and a fully close roof
configuration, see Figure VI.41. This configuration is used for the illustration in the sequel.

Figure VI.47: From left to right, maps of mean pressure coefficients, mean nodal forces
(global vertical forces), standard deviations of pressure coefficients and standard deviations
of nodal forces (global vertical forces) for the 75° wind direction.

It appears that the roof is mainly in depression (with reference to the atmospheric pres-
sure) and that the wind loads are not symmetrically distributed with respect to the axis
of the incoming flow, which is explained by the unevenness of the surrounding, see Figure
VI.46. These figures also illustrate the local increase of mean pressures in zones with sharp
edges. For instance, as a consequence of the high longitudinal main beam and an extra
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acroterium necessary for the moving parts to slide apart, the South-West zone exhibits very
close areas with positive and negative pressures; they just result from the air flow trapped
against the windward face of the vertical wall and the vortex shedding in the leeward area.
Large standard deviations in this area show the substantial intensity of this shedding, and
indicate the need for a proper local design of the roof in that area, for that roof configuration
and wind direction.

VI.3.3 Buffeting analysis (Gaussian assumption)

The background and resonant analyses are conducted in the nodal and modal bases re-
spectively (Section II.6.3), and, structural responses are assumed to be Gaussian random
processes as a first insight. This assumption of Gaussianity is relaxed in Section VI.4. The
first 21 modes are retained for the modal analysis and are depicted in Figure VI.49. A unique
modal damping coefficient ξ equal to 1% is adopted for each mode (Section II.5). The PSDs
of generalized forces of modes 1 and 3 are illustrated in Figure VI.48.
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Figure VI.48: Fitting of a probabilistic model (a parametric psd estimate) to the PSDs
of generalized forces of modes 1 and 3. The parametric estimate, after bandstop filtering,
provides an interesting methodology offering smoothness and robustness against spurious
harmonics.
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The computation of modal variances and covariances is done with a proper recourse to
the white noise approximation and its extension discused in Section II.7. For this purpose,
the PSDs of generalized forces are fitted with a Yule-Walker model in order to (i) smooth
out spurious harmonics and (ii) provides robust estimations of the intensity of the white
noise for each generalized force (Blaise and Denoël, 2011a). The fitting of a Yule-Walker
model to generalized forces is illustrated in Figure VI.48 for modes 1 and 3. The orange and
blue lines represent the non-parametric power spectral density estimates of the raw signal
and of the bandstop filtered signal around the troublesome frequencies, respectively. The
spurious peaks, see (Blaise, 2010) for their origins, are basically transformed to spurious
valleys as the cutoff and order of the bandpass filter have been roughly selected. Red line
represent the parametric model, a 6th-order Yule-Walker model, obtained from the raw and
filtered signals, respectively. One may observe that the successive application of a bandstop
filtering and parametric estimation provides a smooth acceptable power spectral density.
Finally, a reliable estimation of the white-noise is done with the Yule-Walker model. A
similar procedure is adopted for coherence functions of generalized forces.
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Figure VI.50: Real and imaginary parts of the coherence function (in orange) and parametric
estimator (in red) of generalized forces in modes 1 and 3.
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The real and imaginary parts of the coherence function between modes (1,3) are repre-
sented in Figure VI.50. They are fitted using 10th order polynomial functions that give a
much smoother representation of these functions. Next, the fitted polynomial functions give
reliable estimations of the real and imaginary parts of the coherence functions evaluated at
the natural circular frequencies required for the extended white noise approximation (Section
II.7.4). For later developments, note that for frequencies higher than 0.4Hz, the imaginary
part of the coherence function between modes (1,3) is one order of magnitude lower than the
real part. Even if not illustrated, this observation also applies for several other coherence
functions.

The background and resonant contribution to the variance of modal amplitudes are shown
in Figure VI.51. For the resonant contribution, the values obtained with the white noise
approximation are very close to the results of the classical modal analysis. The structure
mainly responds in the third mode which vibrates in a global vertical displacement of the
roof, see Figure VI.49. The structure has a dominant resonant structural behavior since all
background-to-resonant ratios are lower than one.
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Figure VI.51: Background and resonant contribution to the variance of modal amplitudes
in the first 21 modes. The background to resonant ratios indicate that the structure has a
resonant structural behavior.
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In the sequel, the proposed extension of the white noise approximation (Section II.7.4)
to compute the resonant contribution to the (modal covariances and) correlation coefficients
is applied and compared with results of the classical modal analysis.

First, the real and imaginary parts of cross-PSD of m-th and n-th generalized forces
are replaced by white noises which necessitates white noise approximations of the real and
imaginary parts of the coherence functions, respectively denoted by Γ

(Re,wn)
mn and Γ

(Im,wn)
mn ,

and depicted in Figure VI.52. The white noise approximation of the imaginary part of the
coherence functions is one order of magnitude lower than the real part, as observed for
the coherence functions between modes (1,3). Consequently and as commonly adopted, the
contribution of the imaginary part of the cross-PSD in the covariance of modal amplitudes
is negligible. This observation only holds for this specific case study.

Figure VI.52 also depicts the weighting functions for the real and imaginary parts of
coherence functions. Large values are observed since the natural frequencies of the modes are
sufficiently close to each other to provide resonant contribution to the correlation coefficients.
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However, since the magnitude of the white noise approximation of the real and imagi-
nary parts of coherence functions is rather low, the resonant contribution to the correlation
between modes is almost negligible, apart from correlations between modes (4,5) and (11,12)
brought by the real part of coherence functions, see Figure VI.53.
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Finally, the total correlation is obtained as a weighted combination of background and
resonant contributions, see Figure VI.54.
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Figure VI.54: Correlation coefficients of the generalized forces and of the modal amplitudes
obtained by the extended white noise approximation.
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VI.3.4 Envelope of structural responses

The envelope reconstruction problem focuses on the envelope values of internal forces in
elements of the load-bearing system. Figure VI.55 identifies these structural elements and
Table VI.7 collects the structural responses considered for the ERP. Structural responses
are assumed to be Gaussian random processes. However, peak factors are not computed
with (II.3.21). For the sake of simplicity, a unique peak factor taken equal to g(min) = −3.5
and g(max)=3.5 is adopted in first approximation. Under the assumption of Gaussianity,
the mean smallest minimum and the mean largest maximum only differ by their sign, i.e.,
r(min) = −r(max), and the envelope to be reconstructed is symmetric, see Section II.3.

Figure VI.55: Structural elements of the load-bearing system considered for the envelope
reconstruction problem.
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Type Elements Forces Responses

Large beams(a) Spatial beams 399 N,My,Mz, Ty, Tz 1995

Cross-ways beams(b) Spatial beams 65 N,My,Mz, Ty, Tz 325

Beams (roof)(c) Spatial beams 1070 N,My,Mz, Ty, Tz 5350

Columns(d) Spatial beams 128 N 128

Bracing system(e) Bar 196 N 196
nr=7994

Table VI.7: Structural responses considered for the envelope reconstruction problem.

Table VI.8 indicates the overall indicator of correlation for each internal force taken
separately and for all structural responses. For this example, the overall correlation is very
low due to the large dimensions of the stadium. Additionally, the large number of structural
responses make the ERP relatively challenging. The impact on the reconstruction rate is
studied in the next section.

N My Mz Ty Tz nr = 7994
ρr 0.24 0.15 0.21 0.21 0.13 0.16

Table VI.8: Overall indicator of correlation (III.3.8) for each internal force and for all con-
sidered responses.

Because it would be impractical to illustrate the envelope reconstruction for each re-
sponse, it is illustrated with six set of structural elements identified in red in Figures VI.56,
VI.57, VI.58, VI.59, VI.60 and VI.61. The envelope of the considered internal force for these
structural elements is also depicted. The six set of structural elements have been selected to
represent each type of structural element in Table VI.7.

For the envelope reconstruction problem, we choose an acceptable overall reconstruction
Rt of 90 % and an acceptable underestimation ε̌t of −25%. The overall reconstruction
indicator R(k) gives a global picture of the whole reconstruction of the structural responses
in the stadium while the largest relative error indicator ε̌(k) indicates the worse reconstruction
of the envelope.
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Figure VI.56: (a) Identification of 15 beam elements considered for the illustration (in red)
and axial force envelope for these elements.
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Figure VI.57: (b) Identification of 14 beam elements considered for the illustration (in red)
and axial force envelope for these elements.
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Figure VI.58: (c1) Identification of 17 beam elements considered for the illustration (in red)
and bending moment envelope for these elements.
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Figure VI.59: (c2) Identification of 17 beam elements considered for the illustration (in red)
and bending moment envelope for these elements.
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Figure VI.60: (d) Identification of 21 beam elements considered for the illustration (in red)
and axial force envelope for these elements.
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Figure VI.61: (e) Identification of 8 bars considered for the illustration (in red) and axial
force envelope for these elements.
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VI.3.5 Envelope reconstruction with ESWLs

A usual option to solve the envelope reconstruction problem is to consider the equivalent
static wind loads, see Section IV.10. ESWLs are obtained from the hybrid method proposed
by Chen and Kareem (2001) and reviewed in Section IV.6. These hybrid-based ESWLs are
formalized as weighted combinations of background ESWLs obtained with the LRC method
and resonant ESWLs formulated with modal inertial loads. All ESWLs computed with the
hybrid method naturally satisfy the envelope value condition (IV.2.3). Moreover, all ESWLs
fulfill the non-overestimation condition (IV.2.4) since a unique peak factor is considered
(IV.7.13). Therefore, the ESWLs do not require normalization (see Section IV.10.1) before
using them for the envelope reconstruction problem. The ranking of ESWLs is done on how
a given ESWL is able to minimize the cost function, defined in (IV.10.6). The acceptable
overestimation ε̂ is set equal to zero and the parameter γ in the cost function (III.5.11) to
one. Figure VI.62 only illustrates the odd static wind loads since we have in a Gaussian
framework: f

(s)
(i) = −f

(s)
(i+1).

Figure VI.62: Static wind loads obtained as hybrid-based ESWLs (vertical nodal forces).

Figure VI.63 and VI.64 show the evolution of the reconstruction R(k) and the largest
relative error ε̌(k) indicators, respectively. Applying successively ESWLs provides very poor
indicators R(50) =68% , ε̌(50) = −93% with k =50 load cases.

Figure VI.65 shows the reconstructed envelope and relative errors for the six sets of
structural elements with 50 load cases obtained with ESWLs. The envelope of axial forces
in elements (a) of the considered large beam is very well-reconstructed while relative errors
up to -70 % may be observed for structural responses in other elements. Figure VI.66 gives
relative errors of reconstruction for the maximum side of the envelope for each type of internal
force. For an even number of load cases, we have R(50) = R(min)

(50) = R(max)
(50) = 68% and the

average of relative errors of reconstruction is Ψ
(max,1)
(50) = R(max)

(50) − 1 = −32%. Note that a

large number of structural responses have relative errors ε
(max)
(50) much larger than (in absolute
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value) Ψ
(max,1)
(50) = −32% and even up to −95%. These results clearly demonstrate, by way

of an example, that ESWLs are not well-suited for the envelope reconstruction when a very
large number of structural responses are considered.
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Figure VI.63: Evolution of the reconstruction indicator R(k) as a function of the number of
load cases obtained as ESWLs. (ERP parameters: ε̂ = 0%, γ = 1).
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Figure VI.64: Evolution of the largest relative error indicator ε̌(k) as a function of the number
of load cases obtained as ESWLs. (ERP parameters: ε̂ = 0%, γ = 1).
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ESWLs, k = 50 , γ = 1, ε̂ = 0%
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Figure VI.65: Reconstructed envelope r̃
(m)
(50) (in red with x marker), actual envelope r(m) (in

orange with square marker) and corresponding relative errors ε
(m)
(50) (in red with x marker).

Results associated with k =50 load cases obtained as ESWLs. (ERP parameters: ε̂ = 0%,
γ = 1).
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ESWLs, k = 50, γ = 1, ε̂ = 0%
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Figure VI.66: Relative errors of internal forces. Results associated with k =50 load cases
obtained as ESWLs. (ERP parameters: ε̂ = 0%, γ = 1).
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VI.3.6 Envelope reconstruction with PSWLs

Principal static wind loads (Chapter V) are considered in this Section for the envelope re-
construction problem. The matrix F(P) collecting PSWLs result from the singular value
decomposition of F(e), the 15288×15988 (nt×2nr) matrix collecting all ESWLs, see (V.3.2).
PSWLs have to be first normalized before using them for the envelope reconstruction prob-
lem, see Section III.4. Figure VI.67 shows the first 8 normalized PSWLs with ε̂ = 0%.

Figure VI.67: First 8 normalized PSWLs with ε̂ = 0% (vertical nodal forces).

No overestimation of the envelope ε̂ = 0% and parameter γ = 1

The acceptable overestimation of the envelope, noted ε̂, is first set equal to 0 as with ESWLs.
For the envelope reconstruction problem, it means that there is no overestimation of the
envelope anywhere.

Figure VI.68 shows the evolution of the reconstruction indicator R(k). If no combination
of PSWLs is considered, applying them successively provides a reconstruction R(50) =70%
with 50 load cases and therefore perform only slightly better than ESWLs for which R(50) =
68%. With combinations of 2 and 6 PSWLs, maximum reconstructions of R(50) = 45%.
R(∞), R(50) = 71%. R(∞), are respectively obtained. Consequently, a larger number of
PSWLs has to be combined to produce a better reconstruction: with 15, 20, 30 and 40
PSWLs that are combined, overall reconstructions ofR(50) = 84%,R(50) = 87%,R(50) = 89%
and R(50) = 91 are achieved for 50 load cases, respectively. This illustrates that for a same
number of load cases, combining more and more PSWLs produces a lower and lower gain
on the level of reconstruction R(k). With 40 PSWLs that are combined, the number n

(1)
s of

SWLs required to fulfill the target overall reconstruction is equal to 45.
The CPU time to determine the initial set of combination coefficients to consider for

one load case in the constrained nonlinear optimization algorithm may become prohibitive
(Section III.5.1). In our case, the CPU time1 to evaluate the cost function for one set

1Processor: Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz. RAM: 16.0 Go. Programmation done in
Matlab R2015a.
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of combination coefficients is equal to tc = 4·10−4 sec. For a large number of PSWLs
retained for combinations, considering all possible combination coefficients for each load
case is time-consuming because the CPU time is prohibitive: e.g., tc × (3nq − 1) =387 hours
when nq =20 PSWLs have to be combined only for one load case. To circumvent this issue,
we have randomly selected nc = 6000 combination coefficients out of the 3nq − 1 possible
combinations for nq = 15, 20, 30 and 40. The number nc has been chosen as a compromise
between CPU time and reconstruction rate. The gain on R(k) by considering a larger nc is
in fact negligible.

Figure VI.69 depicts the largest relative error indicator ε̌(k). With 50 load cases, this
indicator is still too large, up to -60%, even by considering 50 combinations of the first
40 PSWLs. Figure VI.70 shows the number of structural responses that do not fulfill the
acceptable underestimation ε̌t = −25%. These results demonstrate again that PSWLs are
better suited than ESWLs for the ERP when the number of structural response is large and
the overall correlation is very low. Indeed, PSWLs produce overall reconstructions of the
envelope while ESWLs provide local reconstructions, hence the largest number of structural
responses with ε

(m)
(k) < ε̌t.
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Figure VI.68: Evolution of the reconstruction indicator R(k) as a function of the number of
load cases. (ERP parameters: ε̂ = 0%, γ = 1).
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Figure VI.71 shows the reconstructed envelope and relative errors for the six sets of
structural elements with 50 load cases obtained by combinations of the first 40 PSWLs.
Figure VI.72 gives the distribution of relative errors of reconstruction for the maximum side
of the envelope for each type of internal force with 50 load cases. With PSWLs and contrary
to ESWLs, a large number of structural responses has relative errors ε

(max)
(50) lower than (in

absolute value) Ψ
(max)
(50) = R(max)

(50) − 1 = −11% .

Combinations of PSWLs, nq = 40, k = 50, ε̂ = 0
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Figure VI.71: Reconstructed envelope r̃
(m)
(50) (in red with x marker), actual envelope r(m) (in

orange with square marker) and corresponding relative errors ε
(m)
(50) (in red with x marker).

Results associated with k =50 load cases obtained as combinations of the first 40 PSWLs.
(ERP parameters: ε̂ = 0%, γ = 1).



198 CHAPTER VI. ILLUSTRATIONS

Comparison of Figures VI.72 and VI.66 illustrates well that combinations of PSWLs
perform better for the envelope reconstruction than applying successively ESWLs. Indeed,
no structural response has a relative error up to -95% as with ESWLs and the reconstruction
of the envelope is similar no matter the magnitude of structural responses.
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Figure VI.72: Relative errors of internal forces. Results associated with k =50 load cases
obtained as combinations of the first 40 PSWLs. (ERP parameters: ε̂ = 0%, γ = 1).
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Parameter γ The parameter γ amplifies large relative errors in the cost function (III.5.5).
Since the indicator ε̌(k) is still large compared with ε̌t and the reconstruction indicator R(k)

is close to Rt, in the previous results, the parameter γ is increased. Figures VI.73, VI.74 and
VI.75 shows the indicators R(k), ε̌(k) and the number of responses with ε

(m)
(k) < ε̌t for three

values of γ. For sake of clarity, only the results with combinations of the first 40 PSWLs
are shown and results with ESWLs are plotted for comparison. With ESWLs, the influence
of the parameter γ on ε̌(k) is poor while with PSWLs, it provides a worse ε̌(50). There is no
improvement and this option is therefore disregarded.
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Figure VI.73: Evolution of the reconstruction indicator R(k) as a function of the number of
load cases. (ERP parameters: ε̂ = 0, γ variable).
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Figure VI.74: Evolution of the largest relative error indicator ε̌(k) as a function of the number
of load cases. (ERP parameters: ε̂ = 0, γ variable).
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(k) < ε̌t as a function of the

number of load cases. (ERP parameters: ε̂ = 0, γ variable).

Acceptable overestimation of the envelope Instead of increasing the parameter γ,
we study the influence of the acceptable overestimation ε̂. Considering 50 combinations
of the first 40 PSWLs, even if a large number of structural responses has nearly reached
their envelope values, see Figure VI.72, there is still an important proportion of structural
responses for which relative errors are larger than ε̂t =-25%. In order to provide a better
reconstruction of the envelope with the same number of load cases and PSWLs that are
combined, acceptable overestimations ε̂ of 25% and 50% are considered next.

Figure VI.76 depicts the reconstruction indicator R(k) with ε̂ = 25% and ε̂ = 50%. With
40 PSWLs that are combined, a reconstruction of 99% with ε̂ = 25% and ε̂ = 50% is achieved
for 50 load cases. These results has to be compared with R(50) = 89% with ε̂ = 0% and the
same gain of +9% of reconstruction is obtained with ε̂ = 25% and ε̂ = 50%.

Figures VI.77 and VI.78 show the largest relative error and the number of responses
with ε

(m)
(k) < ε̌t, respectively, with ε̂ = 25% and ε̂ = 50%. With 40 load cases, there is no

improvement of these two indicators. Considering more than 40 PSWLs for combinations
does not bring a significant improvement of the two indicators and those results are therefore
not shown.

Table VI.9 gives the values ε̌ and nr with ε
(m)
(k) < ε̌t considering 50 combinations of the

first 40 PSWLs. Increasing the acceptable overestimation from 0% to 50% does not provide
a significant decrease, from −60% to −51% of the largest relative error. However, from 0%
to 25%, the number of responses with ε

(m)
(k) < ε̌t is significantly decreased.

ε̂ 0% 25% 50%
ε̌(50) -60% −60% -51%

nr with ε
(m)
(50) < ε̌t 810 152 30

Table VI.9: Results with 40 PSWLs that are combined for three values of ε̂.
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Figure VI.76: Evolution of the reconstruction indicator R(k) as a function of the number of
load cases. (Upper graph: ε̂ = 25%, lower graph: ε̂ = 50%, γ = 1).
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Figure VI.77: Evolution of the largest relative error indicator ε̌(k) as a function of the number
of load cases. (Upper graph: ε̂ = 25%, lower graph: ε̂ = 50%, γ = 1).
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Figure VI.78: Evolution of the number of responses with ε
(m)
(k) < ε̌t as a function of the

number of load cases. (Upper graph: ε̂ = 25%, lower graph: ε̂ = 50%, γ = 1).
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Figure VI.79 shows the reconstructed envelope and relative errors for the six set of struc-
tural elements with 50 load cases obtained by combinations of the first 40 PSWLs considering
ε̂ = 25%. Figure VI.79 gives relative errors of reconstruction for the maximum side of the
envelope.

Combinations of PSWLs, nq = 40, ns = 50, ε̂ = 25%
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Figure VI.79: Reconstructed envelope r̃
(m)
(50) (in red with x marker), actual envelope r(m) (in

orange with square marker) and corresponding relative errors ε
(m)
(50) (in red with x marker).

Results associated with k =50 load cases obtained as combinations of the first 40 PSWLs.
(ERP parameters: ε̂ = 25%, γ = 1).
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Figure VI.80: Relative errors of internal forces. Results associated with k =50 load cases
obtained as combinations of the first 40 PSWLs. (ERP parameters: ε̂ = 25%, γ = 1).
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Establishing a new (secondary) PSWL basis With ε̂ = 25% and 50 combinations of
the first 40 PSWLs, there is only 152 envelope values with relative errors larger than the
acceptable underestimation, see Table VI.9. Instead of increasing the number k of load cases,
the acceptable overestimation ε̂ or the number nq of PSWLs retained for combinations, a
new PSWL basis specific for these 152 envelope values is considered, see step 8 in Figure
V.2. Figure VI.81 indicates in red the elements for which a reconstructed response has a
relative error larger than ε̌t.

Figure VI.81: Elements (in red) for which a reconstructed response has a relative error larger
than ε̌t. (ERP parameters: k = 50, ε̂ = 25%, nq = 40 and γ = 1).

First, ESWLs associated with these 152 envelope values are collected in a nt×152 matrix
F(e). Second, a new basis of PSWLs is obtained by the singular value decomposition of this
matrix F(e). Third, each PSWL is normalized to satisfy the acceptable overestimation of
the envelope ε̂ = 25%. Fourth, the envelope reconstruction problem is solved with these
new PSWLs as before. Note this option is only feasible with PSWLs since MILs and CPT
loading modes are completely independent of the set of structural responses considered for
reconstruction.

Figure VI.82 illustrates the first four PSWLs associated with the 152 ESWLs.

Figure VI.82: First 4 normalized PSWLs (vertical nodal forces) associated with the 152
ESWLs (ε̂ = 0%). (Secondary PSWL basis)

Figure VI.83 depicts the largest relative error indicator ε̌(k). With 18 combinations of
the first 40 new PSWLs, the acceptable underestimation is fulfilled. This demonstrates
the efficiency to consider a new PSWL basis. The number n

(2)
s to fulfill the acceptable

underestimation is equal to 68.
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Figure VI.83: Evolution of the largest relative error indicator ε̌(k) as a function of the number
of load cases obtained with PSWLs. (ERP parameters: ε̂ = 25%, γ = 1).
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Figure VI.79 gives relative errors of reconstruction for the maximum side of the envelope.
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Figure VI.84: Relative errors of internal forces considering 68 combinations between the first
40 PSWLs (Two distinct PSWL bases). (ERP parameters: ε̂ = 25%, γ = 1).
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VI.3.7 Envelope reconstruction with CPT loading modes and MILs

Figures VI.85 and VI.86 show the first 8 normalized CPT loading modes and MILs, re-
spectively. These two bases are used for the envelope reconstruction and compared with
PSWLs.

Figure VI.85: First 8 normalized CPT loading modes with ε̂ = 0% (vertical nodal forces).

Figure VI.86: First 8 normalized MILs with ε̂ = 0% (vertical nodal forces).

Figures VI.87, VI.88 and VI.89 show the evolution of the reconstruction indicator R(k),
the largest relative error indicator ε̌(k) and the number of structural responses that do not
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fulfill the acceptable underestimation, respectively, obtained with PSWLs, CPT l.m and
MILs. For 50 load cases, Table VI.10 collects theses indicators considering combinations of
the first 40 basic SWLs. These results illustrate well that PSWLs are more accurate for
reconstruction of the envelope than MILs or CPT loading modes are.

CPT l.m. MILs PSWLs
R(50)[%] 74% 70% 91%
ε̌(50)[%] -100% -99% -60%

nr with ε
(m)
(50) < ε̌t 4500 6966 810

Table VI.10: Results for 50 load cases obtained with combinations of the first 40 basic SWLs.
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Figure VI.87: Evolution of the reconstruction indicator R(k) as a function of the number of
load cases obtained with PSWLs, MILs and CPT loading modes. (ERP parameters: ε̂ = 0%,
γ = 1).
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Figure VI.88: Evolution of the largest relative error indicator ε̌(k) as a function of the number
of load cases obtained with PSWLs, MILs and CPT loading modes. No overestimation of
the envelope: ε̂ = 0. (ERP parameters: ε̂ = 0%, γ = 1).
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Figure VI.89: Evolution of the number of responses with ε
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(k) < ε̌tas a function of the number

of load cases obtained with PSWLs, MILs and CPT loading modes. No overestimation of
the envelope: ε̂ = 0. (ERP parameters: ε̂ = 0%, γ = 1).
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VI.3.8 Summary

The methodology to handle the envelope reconstruction problem has been confronted with
a real-life structure: the large roof of the stadium in Lille, France. Both the large number of
envelope values and the low overall correlation between responses have made the envelope
reconstruction challenging. The principal findings are:

◦ Among the overall reconstruction R(k) and the largest relative error ε̌(k) indicators, the
latter mainly drives the number ns of static wind loads to be considered;

◦ for such a large structure, ESWLs provide local reconstructions of the envelope and
therefore perform badly to provide the same order of reconstruction for all structural
responses and an admissible largest relative error indicator;

◦ the PSWLs are better suited for an accurate reconstruction of the envelope than the
CPT loading modes or the MILs;

◦ the parameter γ in the cost function (III.5.5) does not provide an improvement of the
largest relative error indicator;

◦ the target acceptable underestimation ε̌t is only fulfilled with the PSWL basis, thanks
to its adaptive feature described in Section V.4.
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VI.4 Lille’s stadium (Automatic procedure)

VI.4.1 Introduction

The previous Section VI.3 has demonstrated the inefficacy of the ESWLs, CPT loading modes
and MILs to solve the ERP. In this Section, the automatic procedure described in Section
V.4 to solve the envelope reconstruction problem with PSWLs is studied. Additionally, the
three options to establish SWLs ensuring no underestimation of the envelope, see Section
III.3.5, are investigated. Finally, the impact of the non-Gaussianities on the efficiency to
solve the ERP is discussed.

Indeed, the aerodynamic pressure field is mildly non-Gaussian. This can be appreci-
ated with the maps of the skewness and the excess coefficients of aerodynamic pressures,
illustrated in Figure VI.90 for a wind coming East.

Figure VI.90: Maps of the skewness (left) and the excess (right) coefficients of aerodynamic
pressures for the 75° wind direction.

Envelope of structural responses

The cumulants (II.2.6) of the structural responses are calculated over their realizations thanks
to the modal acceleration method, see Section II.5. The time-domain background analysis
is done in the nodal basis with (II.4.7) while the time-domain resonant analysis is done in
the modal basis by solving (II.5.5) with the Newmark’s algorithm, see (Blaise and Denoël,
2011b) for further details.

The envelope reconstruction problem focuses on the envelope values of internal forces in
elements of the load-bearing system. Figure VI.55 identifies these structural elements and
Table VI.7 collects the structural responses considered for the ERP.

In this Section, the peak factors are computed in three different ways.

◦ First, a unique peak factor taken equal to g(min) = −3.5 and g(max)=3.5 is adopted in
first approximation as in Section VI.3 (assumption of Gaussian random processes).

◦ Second, the peak factors are derived from the formulation of Davenport (II.3.21) (as-
sumption of Gaussian random processes).

◦ Third, the peak factors are derived from the Kareem-Zhao model (II.3.31)-(II.3.32).

Additionally, the peak factors are computed in a fourth way and for a reference period of
one hour in Appendix A.
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The peak factors computed with Davenport and Kareem-Zhao formulations are illustrated
with the six sets of structural elements identified in red in Figures VI.92, VI.93, VI.94,
VI.95, VI.96 and VI.97. The skewness coefficients, excess coefficients, standard deviation
and envelope of the considered internal force for these structural elements are also depicted.
The skewness and excess coefficients are small for important elements, e.g. (a)- (b)-(c1)-part
of group (c2)-(e). However some elements, e.g. (d), exhibit non-Gaussianities which result
in a significantly different envelope than the one obtained by assuming Gaussian random
processes.

Figure VI.91 depicts the skewness and kurtosis coefficients for the structural responses
considered for the ERP. Some processes are close to the monotone limitation and a few are
slightly outside (60 out of 7994). When necessary, the vertical mapping consisting in finding
on the monotone limitation the skewness for the exact kurtosis is applied, as recommended
in (Peng et al., 2014).
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Figure VI.91: Skewness γ3 and kurtosis γe coefficients for the structural responses considered
for the ERP. The black line corresponds to the monotone limitation.
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Figure VI.92: (a) Identification of 15 beam elements considered for the illustration (in red)
and skewness coefficients, excess coefficients, standard deviations, peak factors and envelope
values for the axial force of these elements.
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Figure VI.93: (b) Identification of 14 beam elements considered for the illustration (in red)
and skewness coefficients, excess coefficients, standard deviations, peak factors and envelope
values for the axial force of these elements.
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Figure VI.94: (c1) Identification of 17 beam elements considered for the illustration (in red)
and skewness coefficients, excess coefficients, standard deviations, peak factors and envelope
values for the bending moment of these elements.
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Figure VI.95: (c2) Identification of 17 beam elements considered for the illustration (in red)
and skewness coefficients, excess coefficients, standard deviations, peak factors and envelope
values for the bending moment of these elements.
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Figure VI.96: (d) Identification of 21 beam elements considered for the illustration (in red)
and skewness coefficients, excess coefficients, standard deviations, peak factors and envelope
values for the axial force of these elements.
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Figure VI.97: (e) Identification of 8 bars considered for the illustration (in red) and skewness
coefficients, excess coefficients, standard deviations, peak factors and envelope values for the
axial force of these elements.
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VI.4.2 Automatic procedure to obtain SWLs ensuring no under-
estimation

Principal static wind loads (Chapter V) are considered in this Section for the envelope
reconstruction problem and the automatic procedure described in Section V.4 is used. The
automatic procedure is applied to obtain SWLs ensuring no underestimation for two values
of the final overestimation ε̂′ = 25% and ε̂′ = 10%. The ERP is firstly solved in a Gaussian
framework and secondly in a non-Gaussian framework.

1. Gaussian framework (unique peak factor g(m) = ±3.5)

In Section VI.3.6, the ERP with parameters ε̌t = −25% and ε̂ = 25% is solved with ns=68
combinations of the first nq = 40 PSWLs. Figure VI.98 illustrates the normalized cumulative
summation of the principal coordinates Sii, see (V.3.2), for the primary PSWL basis. The
first nq = 40 PSWLs reproduce more than 99.5% of the total sum of the principal coordinates.
The ratio λP is therefore firstly set equal to 0.995. The initial set of combination coefficients
is randomly generated with nc = 6000, see Section III.5.2.

# Mode
0 10 20 30 40 50

0.7

0.75

0.8

0.85

0.9

0.95

1

6P = 0:995

Figure VI.98: Normalized cumulative summation of the principal coordinates of the primary
PSWL basis.

The three options described in Section III.3.5 to obtain SWLs ensuring no underestima-
tion are summarized in Table VI.11. The option A performs badly in comparison with the
number of SWLs obtained by applying option B or C. The option C performs slightly better
than option B. The option C is only studied in the sequel. It consists in reproducing an
envelope with the same over- and under- estimations, then scaling everything up.

Figure VI.99 illustrates the evolution of the number of responses nr(k) with ε
(m)
(k) < ε̌t as a

function of the number of load cases for the ERP parameters: ε̂ = 4.76%, ε̌t = −4.76%.
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No underestimation and ε̂′ = 25%
Options ε̌t ε̂ ns nq np nr(ns) ε̌(ns) CPU

A 0% 25% 180 4 [37,...,4] 0 X 5min
B -20% 0% 114 3 [37,...,14] 0 X 4min
C -11% 11% 104 3 [37,...,6] 0 X 4min

No underestimation and ε̂′ = 10%
Options ε̌t ε̂ ns nq np nr(ns) ε̌(ns) CPU

A 0% 10% 456 5 [37,...,7] 0 X 10min
B -9.1% 0% 306 4 [37,...,10] 0 X 9min
C -4.76% 4.76% 276 5 [37,...,5] 0 X 10min

Table VI.11: Number of SWLs to solve the ERP with the three different options (see Section
III.3.5) and two values of final overestimation ε̂′. ERP parameters: γ = 1, λP = 0.995,
nc = 6000. Results obtained in a Gaussian framework (unique peak factor). The symbol X
means that the acceptable underestimation is satisfied.
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Figure VI.99: Evolution of the number of responses nr(k), see page 127, with ε
(m)
(k) < ε̌t as a

function of the number of load cases. ERP parameters: ε̂ = 4.76%, ε̌t = −4.76%, γ = 1,
λP = 0.995, nc = 6000. Vertical red lines correspond to an updating of the PSWL basis.
Results obtained in a Gaussian framework (unique peak factor).

2. Gaussian framework (Davenport’s formulation)

The envelope values are based on the peak factors computed with (II.3.21) for a 10-min
observation period. Table VI.12 presents the results with option C and Figure VI.100 shows
the evolution of the number of responses as a function of the number of load cases for the
ERP parameters: ε̂ = 4.76%, ε̌t = −4.76%. The results are similar to the ones obtained
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assuming a unique peak factor, see Table VI.11 and Figure VI.99.

No underestimation and ε̂′ = 25% No underestimation and ε̂′ = 10%
ns nq np nr(ns) ε̌(ns) CPU ns nq np nr(ns) ε̌(ns) CPU

120 3 [37, ..., 6] 0 X 4min 292 5 [37, ..., 3] 0 X 9min

Table VI.12: Number of SWLs to solve the ERP with option C (see Section III.3.5). ERP
parameters: ε̂ = 4.76%, ε̌t = −4.76%, γ = 1, λP = 0.995, nc = 6000. Results obtained in a
Gaussian framework (Davenport’s formulation for the peak factors). The symbol X means
that the acceptable underestimation is satisfied.
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Figure VI.100: Evolution of the number of responses nr(k), see page 127, with ε
(m)
(k) < ε̌t as

a function of the number of load cases. ERP parameters: ε̂ = 4.76%, ε̌t = −4.76%, γ = 1,
λP = 0.995, nc = 6000. Vertical red lines correspond to an updating of the PSWL basis.
Results obtained in a Gaussian framework (Davenport’s formulation for the peak factors).

3. Non-Gaussian framework (Kareem-Zhao model)

The envelope values are based on the peak factors computed with (II.3.31)-(II.3.32) for a
10-min observation period. The ESWLs are still obtained from the hybrid method proposed
by Chen and Kareem (2001) and reviewed in Section IV.6. All ESWLs computed with the
hybrid method naturally satisfy the envelope value condition (IV.2.3). However, all ESWLs
do not necessary fulfill the non-overestimation condition (IV.2.4) since the hybrid method is
based on the Gaussian assumption. Figure VI.101 shows the histograms of overestimation
relative errors that would be obtained if all original hybrid-based ESWLs were used for the
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Figure VI.101: Histograms of overestimation relative errors that are obtained with the origi-
nal hybrid-based ESWLs. Overestimation relative errors associated with (a) upper (positive)
and (b) lower (negative) envelope values.

ERP. There are approximately 9000 envelope values out of 15988 that would be overestimated
in the range [0,20%]. This is a first hint that these ESWLs are not well-suited to tightly
reconstruct the envelope.

Table VI.13 presents the results with option C and Figure VI.102 shows the evolution of
the number of responses as a function of the number of load cases for the ERP parameters:
ε̂ = 4.76%, ε̌t = −4.76%. For the final overestimation parameter ε̂′ = 25%, the number of
SWLs is approximately the same but the number of PSWL bases increased from 3, in Table
VI.12, to 7. For the value ε̂′ = 10%, both the number of SWLs to solve the ERP and the
number of PSWL basis increase, respectively from 292 and 5, in Table VI.12, to 411 and 10.

This example shows that, if ESWLs based on Gaussian assumption are used for the ERP,
the level of complexity is increased by taking into account non-Gaussian peak factors, espe-
cially for small ranges of target underestimation and acceptable overestimation. However,
the automatic procedure proves to be efficient even if the original ESWLs do not satisfy the
non-overestimation condition.

No underestimation and ε̂′ = 25% No underestimation and ε̂′ = 10%
ns nq np nr(ns) ε̌(ns) CPU ns nq np nr(ns) ε̌(ns) CPU

121 7 [39,...,4] 0 X 12min 411 10 [39,...,7] 0 X 22min

Table VI.13: Number of SWLs to solve the ERP with option C (see Section III.3.5). ERP
parameters : ε̂ = 4.76%, ε̌t = −4.76%, γ = 1, λP = 0.995, nc = 6000. Results obtained in a
non-Gaussian framework (Kareem-Zhao model for the peak factors). The symbol X means
that the acceptable underestimation is satisfied.
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Figure VI.102: Evolution of the number of responses nr(k), see page 127, with ε
(m)
(k) < ε̌t as

a function of the number of load cases. ERP parameters: ε̂ = 4.76%, ε̌t = −4.76%, γ = 1,
λP = 0.995, nc = 6000. Vertical red lines correspond to an updating of the PSWL basis.
Results obtained in a non-Gaussian framework (Kareem-Zhao model for the peak factors).

VI.4.3 Summary

In Gaussian and non-Gaussian frameworks, the automatic procedure to handle the envelope
reconstruction problem with PSWL basis has been assessed to Lille’s stadium and has proven
to be efficient. The three options to establish SWLs ensuring no underestimation of the enve-
lope have been investigated and the option C performs better. Only 121 SWLs are required
to obtain a reconstructed envelope without underestimation of the actual 15988 envelope
values and with overestimation lower than 25%. This proves the remarkable relevance of the
automatic procedure.
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VI.5 Low-rise gable roof building

A rigid gable-roofed low-rise building is analyzed under wind actions. Extensive wind-tunnel
tests have been performed to study the aerodynamic pressure field on these usual structures2.
For normal dimensions, this type of structure is common to design and to build, being thence
attractive for many applications, mainly residential and industrial. The structure used for
illustrations has sharp edges between the vertical walls and the roof. Depending on the
angle of attack of the wind, the aerodynamic pressure field for this roof configuration is
known to exhibit mildly to strongly non-Gaussianities. Contrary to the first two examples,
the envelope to be reconstructed is now asymmetric (II.4.17) since the non-Gaussianity of
the structural responses is taken into account through a quasi-static time-domain analysis.
The roof is supported by a collection of frames and we focus on two specific ones for the
illustrations.

Wind tunnel tests

The dimensions of the structure are a width of 36.6 m (120 ft), an eave height of 3.65 m (12
ft), a length of 57.2 m (187.5 ft) and a roof slope of 1:12. Wind-tunnel measurements have
been done at the Boundary Layer Wind Tunnel Laboratory (BLWTL) of the University of
Western Ontario (Ho et al., 2005), see the scaled model in Figure VI.103.

Figure VI.103: Picture of the rigid gable-roofed building in the wind-tunnel. From wind-
Pressure (Main and Fritz, 2006).

The pressure time series are available from (Main, 2006)3 and can be used through wind-
Pressure (Main and Fritz, 2006), a Matlab-based Database-Assisted Design software available
on the internet. The length scale is 1:100, the sampling frequency in the wind-tunnel is 500
Hz and the terrain condition is suburban, corresponding to a roughness length of 0.3 m. The
mean wind speed at eave height is equal to 5.91 m/s in the wind tunnel. In full scale, the
mean wind speed V at eave height is equal to 14.73 m/s and the velocity and time scales are
1/2.5 and 1/40.1, respectively. The sampling frequency corresponds to 12.5 Hz in full scale
(a time step equal to 0.08 seconds). Each measurement lasts about 66.6 minutes full scale.
The leakage case is no opening in the building.

2Luca Caracoglia is acknowledged for recommending us the National Institute of Standards and Technol-
ogy aerodynamic database for the illustration of our study.

3Joseph A. Main is acknowledged for having provided several explanations of the data sets.
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Pressure coefficients are usually referenced using the mean wind speed V at a given
reference height; they are defined from the aerodynamic pressures by

c′p =
p′

1

2
ρV 2

, (VI.5.1)

where ρ = 1.225 kg/m3 is the air density. A positive pressure coefficient means that aerody-
namic pressure acts towards the inner of the building while a negative coefficient indicates
suction (with reference to the atmospheric pressure). For convenience, ESWLs as well as
PSWLs are illustrated with the pressure coefficients.

Figure VI.104 shows in an exploded view the tap array (indicated by the dots) as well as
tributary areas for each pressure tap on the vertical faces along the length of the building
and on the roof.

Figure VI.104: (a) Exploded view of the tap array with varying tap density, the triangles
identify two frames considered for illustrations. Only aerodynamic pressures measured at
the taps contributing to the reaction forces of the girts and purlins attached to (b) Frame
#2 and (c) Frame #3 are used, respectively, for illustrations. The wind direction θ = 340°

is studied.

The vertical faces and the two slopes of the roof are slightly shifted relative to each other
for clarity. Taps on the vertical faces along the width of the building are disregarded in the
structural analysis and are thus not shown in Figure VI.104. The wind direction convention
is shown in Figure VI.104. The wind direction θ = 340° is chosen for illustration.

Figure VI.105 shows the maps of the mean and standard deviations along with the skew-
ness and excess coefficients of the pressure coefficients. The roof is mainly loaded close to
the sharp edge roof connection with the gable end about a quarter of the length of the
building, along Frame #2. The mean loading is suction and large standard deviations close
to the gable end is explained by the flow detachment intensity which is important on this
windward side of the roof because the air flow encounters the structure’s roof with its sharp
edge connection between the horizontal and vertical parts. The aerodynamic pressure field
exhibits also large skewness and excess coefficients, up to -2 and 8, respectively. This must
be taken into account in a non-Gaussian analysis. The cumulants (II.2.6) and cross-central
moments (II.2.12) of random processes are calculated over their realizations. Figure VI.105
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also shows, for instance, the peak factors for the mean largest maximum and mean smallest
minimum of the pressure coefficients computed with the “non-Gaussian” model exposed in
Section II.3. For negative skewness coefficient, the peak factor for the mean largest mini-
mum is larger than the peak factor for the mean smallest maximum (in absolute value), i.e.,
−g(min) > g(max).
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Figure VI.105: Maps of (a) mean, (b) standard deviation, (c) skewness (d) kurtosis, peak
factors (e) g(max)(II.3.31) and (f) g(min) (II.3.32) of the pressure coefficients for a 340° wind
direction.
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Description of the structure

The roof is supported by 11 fixed-base frames placed every 5.72 m. The second and third
internal structural frames are used for illustrations and their positions are identified with
triangles in Figure VI.104, numbered from bottom to top in the figure.

Each frame is clamped and the connections are considered as infinitely rigid. Columns
are HE 450 AA and beams are IPE 450 with a 235 MPa steel grade and a 205000 MPa
Young’s modulus. The finite element model of one frame, see Figure VI.106, is an assembly
of classical 2-D beam elements with three degrees of freedom per node (rotation, horizontal
and vertical displacements).

Exploded View

A, Frame#2

B, Frame#3

Figure VI.106: Elevation of a Frame. The dots identify the nodes of the finite element model.
The bending moments at the two nodes A and B and identified by the circles are considered
for the illustrations of ESWLs. The exploded view is used for the illustrations.

Each frame is divided into 40 finite elements and the number of degrees of freedom is thus
equal to 123 per frame. The aerodynamic pressure field acting on the cladding is transferred
by the girts and purlins to each frame of the building (Main and Fritz, 2006). Girts and
purlins, considered as hinged-hinged beams, are not modeled and each frame is analyzed
separately. The design of the steel frames has been done following the Eurocode (2005).

Determination of the envelope

The bending moments at each node of the model are considered for the envelope recon-
struction problem and the computation of the PSWLs. The number of structural responses
considered is nr = 451. The bending moments at the nodes identified in Figure VI.106 and
labeled A and B, in the two distinct frames #2 and #3, see Figure VI.104, are considered
to illustrate ESWLs. The envelope reconstruction using PSWLs is illustrated with both
considered frames, as well.

Figure VI.107 represents each step to compute the total envelope of the bending moments.
For sake of clarity, only a scale is given for each graph and the numerical values for the two
considered bending moments are given in Table VI.14. The total envelope results from
an element-by-element multiplication of the peak factors and the standard deviations and
by adding the mean component, see equations (II.4.15)-(II.4.19). Bending moments in the
second frame exhibit large skewness and kurtosis coefficients resulting in an asymmetric
envelope. On the opposite, bending moments in the third frame exhibit moderate skewness
and kurtosis coefficients resulting in a nearly symmetric envelope, close to the limit case for
Gaussian structural responses. Indeed, the aerodynamic pressure field acting on the third
frame is nearly Gaussian.
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Figure VI.107: Mean, standard deviation, skewness coefficient, kurtosis coefficient, peak
factors (II.3.31)-(II.3.32), envelope and total envelope for the bendings moments of both
considered frames.

µr′ σr γ3,r γe,r g(max) g(min) r(max) r(min)

[kNm] [kNm] [-] [-] [-] [-] [kNm] [kNm]
A (min) 32.8 19.0 1.0 2.3 6.4 -3.0 121.5 -57.9
B (max) -9.4 9.9 -0.2 0.4 3.9 -4.6 38.8 -45.2

Table VI.14: Numerical data associated with the two bending moments in Frame #2 and
Frame #3, respectively.

Figure VI.108 depicts the skewness and kurtosis coefficients for the recorded aerodynamic
pressures and the bending moments. Some processes are close to the monotone limitation
and a few are slightly outside. When necessary, the vertical mapping consisting in finding
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on the monotone limitation the skewness for the exact kurtosis is applied, as recommended
in (Peng et al., 2014).
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Figure 1: Skewness γ3 and kurtosis γe coe�cients for aerodynamic pressures and for bending moments, in red for
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monotonic region.

1

Figure VI.108: Skewness γ3 and kurtosis γe coefficients for aerodynamic pressures (left) and
for bending moments (right), in red for Frame #2, in blue for Frame #3 and in black for
the nine remaining frames. The black line corresponds to the monotone limitation.

VI.5.1 Two-step adjustment method

Chapter IV has highlighted that the equivalent static wind loads p(e,m) in a non-Gaussian
context do not necessarily satisfy the envelope value condition, nor the non-overestimation
condition. These two issues are addressed with a two-step adjustment method described
in Section IV.9. The method is particularized next in the case of a quasi-static structural
behavior.

If the envelope value condition is not fulfilled (except in the case of LRC-based ESWLs
where the envelope value condition is naturally satisfied) under the original ESWLs p(e,m),
scaled ESWLs are defined for this purpose by

(αp)(e,m) := α(e,m)p(e,m). (VI.5.2)

If the fulfillment of the non-overestimation condition fail under the original or scaled ESWLs,
an adjusted ESWLs is defined, satisfying the 2 conditions (IV.2.3)-(IV.2.4), by

(β ◦ αp)(e,m) := β(e,m) ◦ α(e,m)p(e,m). (VI.5.3)

The scaling coefficient α(e,m) is determined to ensure the envelope value condition while the
local coefficients β(e,m), an nl×1 vector, adjust the scaled ESWLs (αp)(e,m) in order to fulfill
the non-overestimation condition. We want to hold the envelope value condition and to
satisfy the non-overestimation condition by finding the minimum of a problem specified by

min
β(e,m)

∑nl
j=1

∣∣∣β(e,m)
j − 1

∣∣∣γβ , (VI.5.4)

under the linear constraints
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+B

[
(β ◦ αp)(e,m)

]
− r(max) 6 0,

−B
[
(β ◦ αp)(e,m)

]
+ r(min) 6 0,∑nl

j=1 Bijβ
(e,m)
j α(e,m)p

(e,m)
j = r

(m)
i .

(VI.5.5)

Symbol γβ is a positive coefficient taken here equal to 2 as a compromise between accuracy

and convergence of the optimization. In the sequel, the magnitudes of α(e,m) and β(e,m) are
used in the illustrations to compare ESWL formulations in a Non-Gaussian framework.

VI.5.2 Bicubic model

In this Section, the parametric bicubic model (IV.8) for joint load-response PDFs is assessed.
The considered responses for illustrations are the two bending moments identified in Figure
VI.106. Where flow detachments occur and lead to non-Gaussianities, three aerodynamic
pressures, labeled A B and C, are considered and identified in Figure VI.109.

ABC

Figure VI.109: Localization of the three aerodynamic pressures A, B and C considered for
the illustration of joint load-response PDFs.

Figures VI.110 and VI.111 illustrate the PDFs of the selected bending moments and aero-
dynamic pressures, respectively. The matching of the histogram and the cubic model PDF
shows that the model is fine for representing these non-Gaussian responses and pressures.
This was already observed in (Gurley et al., 1997).
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Figure VI.110: PDFs of the selected bending moments. Histograms in orange, Gaussian
PDFs in blue and PDFs obtained with the Hermite moment model in burgundy.
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Figure VI.111: PDFs of the selected aerodynamic pressures. Histograms in orange, Gaussian
PDFs in blue and PDFs obtained with the Hermite moment model in burgundy.

Figures VI.112 and VI.113 depict the joint PDFs obtained with a kernel density estimator
(Botev et al., 2010) along with the Gaussian joint PDFs and the joint PDFs obtained with
the bicubic model, respectively. The joint PDFs are represented by contours associated with
constant values taken by the bivariate distributions. A constant step spaces the contour
lines. These contours help to get some insight into the form of these joint PDFs and assess
whether or not the bicubic model performs well. Compared to the Gaussian joint PDFs,
it can be seen that the bicubic model succeed to localized the mode of the kernel bivariate
density estimation. Moreover, the contours associated with the same value match very well,
which is not the case with the Gaussian joint PDFs. For softening random processes, the
bicubic model is therefore easy to be implemented, useful for representing joint PDFs, and
accurate to represent various joint PDFs.
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VI.5.3 ESWLs

This example aims at comparing ESWLs computed with 3 different methods: the common
conditional sampling technique, the Gaussian (LRC method) and the non-Gaussian formu-
lation (CEL method with bicubic model), see Sections IV.3, IV.4 and IV.7, respectively.
The magnitude of the coefficients, α(e,m) and β(e,m), applied to satisfy the envelope and non-
overestimation conditions are compared to assess the formulation efficiency, i.e., those with
the coefficients closest to unity are considered as more efficient. For the usual sampling
technique, the load scaling coefficient α(e,m) has to be understood as the ratio between the
envelope and the one that would have been obtained from realisations.

Figure VI.114 illustrates the surfaces of influence, load-response correlation coefficients
and response-response correlation coefficients for the two considered bending moments A
(min) and B (max). The load-response correlation and the response-response correlation
coefficients help understanding the ESWL and structural response patterns, respectively.
For example, the ESWL associated with response A produces the envelope value of the
bending moment at the left support (Frame #2); furthermore bending moments close to
their envelope values are also expected in both frames at the connection between columns
and beams and at mid-span where the correlation coefficients are large. This is confirmed in
Figure VI.116.

Response A, Frame #2 Response B, Frame #3
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Figure VI.114: (a) Surface of influence, (b) load-response correlation coefficients and
response-response correlation coefficients in (c) Frame #2 and in (d) Frame #3.

Figure VI.115 illustrates the ESWLs c
(e,m)
p associated with the mean largest minimum

and maximum of the considered responses A and B, respectively. First, third and fourth
columns illustrate the original ESWLs, the coefficients β(e,m) and the adjusted ESWLs.
Also the coefficients α(e,m) are given for each method. For response A, the three methods



VI.5. LOW-RISE GABLE ROOF BUILDING 237

produce original (unadjusted) ESWLs which have similar patterns with slight differences in
magnitude. This is not the case for the response B, for which the leading edge is less loaded
with the ESWL computed from the sampling technique (a) than with the two other methods
(b,c).

The target bending moment A is underestimated with the original ESWLs c
(e,min)
p , i.e., the

envelope value condition is satisfied with scaling coefficients larger than one, namely α(e,min) =
1.13 for the sampling technique and α(e,min) = 1.10 for the CEL method. Nevertheless the
target bending moment B is underestimated with the sampling technique (α(e,max) = 1.12)
and slightly overestimated (α(e,max) = 0.98) with the CEL method.

The range of variation for coefficients β(e,m) is also larger for response A (up to 1.8)
than for response B. For both responses, the coefficients β(e,m) obtained with the sampling
technique and the CEL method are lower than those necessary for the LRC method. For
response B, the coefficients β(e,m) obtained with the sampling technique and the CEL method
are close to one, i.e., the non-overestimation condition is nearly fulfilled under the scaled
ESWL (αcp)(e,max); slight adjustments are sufficient. Conversely for the LRC method, a
larger range of variation for the coefficients β(e,m) is necessary.
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Figure VI.115: iginal (left) and adjusted (right) ESWLs and coefficients α(e,m) and β(e,m)

for the bending moments A (m ≡ min) and B (m ≡ max). Conditional sampling technique
(e ≡ S), LRC method (e ≡ L) and conditional expected load method with the bicubic model
(e ≡ B).
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Figures VI.116-VI.117 illustrate the static bending moments in the structure under the
two scaled ESWLs (αcp)(e,m) associated with the bending moments A and B, respectively.
The bending moments under the original ESWL and under the adjusted ESWL provide
very similar profiles. The responses under the three kinds of loadings (original, scaled and
adjusted) are distinguished with a discrepancy indicator ε(e) that measures the relative dif-
ferences between the envelopes

(
r(max), r(min)

)
and the responses r(e,m) under the ESWLs,

such as

ε(e) = max{
(
r(e,m) − r(min)

)
÷ r(min),

(
r(e,m) − r(max)

)
÷ r(max)},

where division is performed element by element. Three such indicators exist and are repre-
sented in Figs. VI.116 and VI.117 with the following markers under : original ESWL c

(e,m)
p

(x marker), scaled ESWL (αcp)(e,m) (o marker) and adjusted ESWL (β ◦ αcp)(e,m) (square
marker).

For the bending moment A (in Frame #2) and before adjustment (Figure VI.116, o mark-
ers), overestimations do not occur in sections adjacent to the considered bending moment
but in other parts of Frame #2, where the correlation with the bending moment A is large.
No overestimation occurs in Frame #3 when considering the ESWLs associated with bending
moment A.

For the bending moment B (in Frame #3) and before adjustment (Figure VI.117, o
markers), largest overestimations occur with the LRC method, hence the highest range of
variation for the coefficients β(e,max). With the LRC method, no overestimation occurs in
Frame #3 but very large overestimations (nearly 40%) occur in Frame #2. These overesti-
mations take place where (i) correlation with the bending moment B is large, Figure VI.114,
and (ii) peak factors, Figure VI.107, are very different, as demonstrated by (IV.7.13).
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Figure VI.116: Static bending moments r(e,min) under scaled ESWLs associated with bending
moment A. Relative differences ε(e) between the envelope of the bending moments and the
bending moments obtained under the original, the scaled and the adjusted ESWLs. Positive
relative differences (overestimations) are depicted outside the frame. Large (unimportant)
negative relative differences (depicted inside the frame) are not shown for sake of clarity.
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61 kNm 27 kNm

48 % 10 %
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Figure VI.117: Static bending moments r(e,max) under scaled ESWLs associated with bending
moment B. Relative differences ε(e) between the envelope of the bending moments and the
bending moments obtained under the original, the scaled and the adjusted ESWLs. Positive
relative differences (overestimations) are depicted inside the frame. Large (unimportant)
negative relative differences (depicted inside the frame) are not shown for sake of clarity.
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We have also computed the ESWLs for each bending moment (in Frames #2 and #3)
and for both envelopes (min and max). Figure (VI.118) illustrates the associated scaling
coefficients α(e,m) and also maximum of the relative differences ε(e) to the envelope of the
static responses under the scaled ESWLs (αcp)(e,m). Similar range of variation for the scaling
coefficients α(e,m) are observed for the sampling technique (filled dot marker) and the CEL
method (filled square marker). The fact that the envelope value condition is not fulfilled
is an inherent drawback of the CEL method while it is due to the low number of 10-min
observation windows for the sampling technique. Indeed, provided that the peak factor used
for the envelope is the same as the actual one, i.e., g(m) = g(S,m), no scaling coefficient would
be needed. We also recall that the scaling coefficients α(e,m) are exactly equal to unity for
the LRC method. In terms of overestimation of the envelopes r(e,m) under the scaled ESWLs
(αcp)(e,m), it is observed that (i) in Frame #2, larger overestimations are observed (up to
50%) with the LRC-method (cross markers) than with the two other methods and (ii) in
Frame #3, large overestimations are only observed with the LRC-method while the other
two methods perform very well. Note that the sampling technique performs slightly better
than the CEL method, especially for the bending moments in Frame #2.

0.26 0.23

0.31 0.2

30 % 15 %

26 % 14 %

Figure VI.118: Coefficients α(e,m) that scale the original ESWLs computed for both envelope
values for each bending moment in Frame #2 and Frame #3. Maximum of the relative
differences ε(e) to the envelope of the static responses under scaled ESWLs computed for
each bending moment in Frame #2 and Frame #3.

To summarize, the non-overestimation condition seems to be more easily fulfilled with
the ESWLs derived from the sampling technique and the CEL method than with the LRC
method. The extension of the original LRC method to a non-Gaussian formalism improves
the fulfillment of the non-overestimation condition, i.e., smaller coefficients β(e,m) are neces-
sary than those obtained with the LRC method.
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In the light of these results, the use of ESWLs with non-Gaussian structural responses
should receive more attention and we should opt for the ESWLs derived from the sampling
technique or the proposed CEL method instead of the LRC method.

VI.5.4 Envelope reconstruction with PSWLs

In this Section PSWLs are not derived from adjusted ESWLs but from the original ones.
Indeed, even if ESWLs do not fulfill the envelope value nor the non-overestimation condition,
PSWLs anyway have to be normalized to fulfill the tangency condition (III.4.4). Furthermore
in case of large non-Gaussianity, adjusted loadings may be significantly different from the
original ones, as shown in the previous Section. However, both ESWL bases are investigated
in Section VI.5.5and it was observed that the efficiency of the PSWLs for the envelope re-
construction problem is worse, considering adjusted ESWLs rather than the original ones for
the SVD operation. There is, in our understanding, no mathematical proof that adjustment
of ESWL prior to the SVD decomposition provides a faster reconstruction of the envelope.
The demanding computation of the local coefficients β(e,m) is therefore not justified. Thence
we recommend the use of the original ESWLs for computing PSWLs and only this approach
is illustrated in the sequel.

For the envelope reconstruction problem, we choose an acceptable overall reconstruction
Rt of 95% and an acceptable underestimation ε̌t of −15%.

Envelope reconstruction

This section assesses the envelope reconstruction efficiency of the bending moments in the
eleven frames using combinations of a limited number of PSWLs. The normalized cumulative
summation of the principal coordinates Sii is shown in Figure VI.119.

Principal static wind loads
1 2 3 4 5 6 7 8 9 10

0

0.5

1

a

b
c

Figure VI.119: Normalized cumulative summation of the principal coordinates of the prin-
cipal loadings.(a) Conditional sampling technique, (b) LRC method, and (c) CEL method
(bicubic model) based PSWLs.

The LRC method has the largest principal coordinates while the sampling technique
has the smallest. The ESWL basis obtained with the conditional sampling technique are
actually more dissimilar than in the two other approaches. This is explained by the fact
that the ESWLs are sampled from pressure field and the limitation on the small number of
10-min observation windows. It makes it such that there is more variability in the ESWLs
associated with different responses, than what the LRC or the CEL approaches —based
on smooth models— provide. A solution to address the issue is the (costly) repetition of
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experiments. For example, if the number nT was increased, the variability of the wind load
patterns p(S,m) between structural responses that are well correlated would decrease.

Figure VI.120 illustrates the first four normalized PSWLs C
(P,1)
p with coefficients α

(P,1)
i ,

see (III.4.2). The first three principal loadings show important similarities in their pattern
and magnitude for the three methods while the fourth principal loading obtained with the
sampling technique is completely different. The first principal loading produces a suction
on the entire roof while the second and third exhibit asymmetric patterns, between the
windward edge and the roof behind and between the western and eastern parts of the roof,
respectively. The second normalization for any PSWL is obtained with

C
(P,2)
p,i = −α

(P,2)
i

α
(P,1)
i

C
(P,1)
p,i ,

see (III.4.2). Note that the ratio α
(P,2)
i /α

(P,1)
i , given in Figure VI.120, has a large range of

variation [0.49 1.79] here while it is equal to one in a Gaussian framework.

Figure VI.121 illustrates the static bending moments under C
(P,1)
p,1 , C

(P,2)
p,1 , C

(P,1)
p,3 and

C
(P,2)
p,3 in Frames #2 and #3 as well as relative differences between the static responses

R
(P,1)
i and the envelope, defined as

ε
(P,1)
i = max{

(
R

(P,1)
i − r(min)

)
÷ r(min),

(
R

(P,1)
i − r(max)

)
÷ r(max)}.

Bending moments under the PSWLs computed with the LRC-method and the CEL
method are almost similar while disparities are observed with the bending moments under
C

(P,1)
p,1 and C

(P,2)
p,1 computed with the conditional sampling technique. For the sampling

technique, lower relative differences are observed under C
(P,1)
p,1 in comparison with the two

other methods, but larger relative differences are observed under C
(P,2)
p,1 . Notice that the

PSWLs C
(P,1)
p,3 and C

(P,2)
p,3 produce large bending moments at the specific sections where the

bending moments under C
(P,1)
p,1 and C

(P,2)
p,1 are rather low, e.g., at mid-height of the columns

and at quarter-span and three quarter-span of the roof.
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Figure VI.120: Aerodynamic coefficients for the first four normalized PSWLs (the PSWL

normalized by α
(P,1)
i , see (III.4.2), are represented; the PSWL normalized by α

(P,2)
i are

obtained by multiplication by −α(P,2)
i /α

(P,1)
i ). Normalization is done with ε̂ = 0%.
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Figure VI.121: Static bending moments and relative differences with the envelope under
C

(p,1)
p,1 , C

(p,2)
p,1 , C

(p,1)
p,3 and C

(p,2)
p,3 in Frames #2 and #3. (ERP parameter: ε̂ = 0%).
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Figure VI.122 illustrates the reconstructed envelope with ten load cases: (i) the first
five PSWLs along with both normalizations are applied successively (no combinations) and
(ii) with optimized combinations of the first four PSWLs. As expected, the reconstructed
envelopes in both frames have the same range of relative errors, since PSWLs and combina-
tions thereof aim at a global reconstruction of the bending moments in the whole structure
(eleven frames). The reconstructed envelope is not satisfactory applying the first 5 PSWLs
without combination: relative errors are large, up to -65%. For the same number of load
cases, ten combinations of the first 4 PSWLs produce a satisfactory reconstruction of the
envelope; the largest relative errors, up to -40%, are observed in sections where the bending
moments are low.

61 kN 27 kN 

33 % 27 %

32 % 29 %

61 kN 27 kN 

6 % 15 %

5 % 11 %

27 kN

15 %

11 %5 %

6 %

61 kN

Figure VI.122: Reconstructed envelope and associated relative errors with ten load cases.
(ERP parameter: ε̂ = 0%, γ = 1).
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Even if the largest relative errors are identified for small bending moments, they are
larger than the acceptable underestimation ε̌t = −15%. An acceptable overestimation of
ε̂ =15% is therefore accepted next to satisfy more easily the underestimation condition.

The indicator of reconstruction R(k) gives a global picture of the whole reconstruction of
the bending moments in the entire structure, i.e., in all eleven frames. The evolution of R(k)

is depicted as a function of the number of load cases (from 1 to 25) derived by successive
applications of ESWLs, PSWLs (no combinations) and combinations thereof (2, 4, 6 and 8
PSWLs are combined), see Figure VI.123. The evolution of R(k) features a slow monotonic
increase.

PSWLs obtained with the conditional sampling technique performs slightly worse than
with the two other approaches but this is not significant. Applying PSWLs without combi-
nation gives a value of R(k) around 80% for 10 load cases and 10 combinations of the first
2 PSWLs bring a significant improvement of +10%. Four or five combinations of at least 4
PSWLs are required to satisfy the target reconstruction Rt = 95% and this is three times
lower than the number of ESWLs required for the same purpose.

Figure VI.124 shows the largest relative error indicator. PSWLs obtained the conditional
sampling technique performs worse than the two others since the underestimation condition
is not fulfilled with 25 load cases. The underestimation condition is fulfilled with 20 and 11
load cases by considering combinations of the first 8 PSWLs obtained with the LRC and CEL
methods, respectively. Therefore, the latter PSWL basis obtained with CEL-based ESWLs
perform better than the two other PSWLs bases obtained with CST-based and LRC-based
ESWLs.
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Figure VI.123: Evolution of the reconstruction indicator R(k) as a function of the number of
load cases. (ERP parameters: ε̂ = 15%, γ = 1).
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Figure VI.124: Evolution of the largest relative error indicator ε̌(k) as a function of the
number of load cases. (ERP parameters: ε̂ = 15%, γ = 1).
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VI.5.5 Automatic procedure to obtain SWLs ensuring no under-
estimation

The automatic procedure described in Section V.4 is implemented. In Section VI.3.6, the
ERP with parameters ε̌t = −15% and ε̂ = 15% is solved with combinations of the first
nq = 8 PSWLs. Figure VI.119 illustrates the normalized cumulative summation of the
principal coordinates Sii, see (V.3.2), for the primary PSWL basis. The first nq = 8 PSWLs
reproduce approximately 90% of the total sum of the principal coordinates. The ratio λP

is therefore firstly set equal to 0.90. The initial set of combination coefficients is randomly
generated with nc = 6000, see Section III.5.2.

Table VI.15 gives the number of SWLs to solve the ERP with the three different options
(detailed in Section III.3.5) and for two values of the final acceptable overestimation ε̂′. These
results are obtained with original CEL-based PSWLs. The option B fails to satisfy the target
acceptable underestimation ε̌t, see the largest relative error indicator ε̌(k) for k = ns. The
option A performs badly in comparison with the number of SWLs obtained by applying
option C. In the sequel, the option C is therefore only studied. Globally, two updatings of
the PSWL basis are sufficient.

No underestimation and ε̂′ = 25%
Options ε̌t ε̂ ns np nq nr(ns) ε̌(ns) CPU

A 0% 25% 27 2 [14,1] 0 0% 1min
B -20% 0% 19 3 [14,5,1] 1 −23% 1min
C -11% 11% 14 2 [14,5] 0 X 1min

No underestimation and ε̂′ = 10%
Options ε̌t ε̂ ns np nq nr(ns) ε̌(ns) CPU

A 0% 10% 44 2 [14,5] 0 X 1min
B -9.1% 0% 28 3 [14,7,1] 1 -14% 1min
C -4.76% 4.76% 30 2 [14,5] 0 X 1min

Table VI.15: Number of SWLs to solve the ERP with the three different options (see Section
III.3.5) and for two values of the final acceptable overestimation ε̂′. ERP parameters: ε̂ =
4.76%, ε̌t = −4.76%, γ = 1, λP = 0.90 and nc = 6000. The symbol X means that the
acceptable underestimation is satisfied. Results obtained with combinations of the original
CEL-based PSWLs.

Figure VI.125 illustrates the evolution of the number of responses nr(k) with ε
(m)
(k) < ε̌t as

a function of the number of load cases for the ERP parameters ε̂ = 4.76%, ε̌t = −4.76%.
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Figure VI.125: Evolution of the number of responses nr(k), see page 127, with ε
(m)
(k) < ε̌t as

a function of the number of load cases. ERP parameters: ε̂ = 4.76%, ε̌t = −4.76%, γ = 1,
λP = 0.90, nc = 6000. Vertical red lines correspond to an updating of the PSWL basis.
Results obtained with combinations of original CEL-based PSWLs.

The influence of the ERP parameters λP and nc on the number of SWLs ns is reported in
Table VI.16. With λP = 0.85, the automatic procedure fails to satisfy the target acceptable
underestimation ε̌t = −4.76%. Additionally, an increase of the parameter λP or nc does
not necessarily correspond to a decrease of the number of SWLs ns. The ERP parameters
λP=0.90 and nc = 6000 chosen at first are satisfactory.

No underestimation and ε̂′ = 25% No underestimation and ε̂′ = 10%
λP nc ns nq nr(ns) ε̌(ns) CPU ns nq nr(ns) ε̌(ns) CPU

0.85
6000 13 1 0 X 1min 42 4 1 -6% 1min
12000 13 1 0 X 1min 42 4 1 -6% 1min

0.90
6000 14 2 0 X 1min 30 2 0 X 1min
12000 10 1 0 X 1min 29 2 0 X 1min

0.95
6000 12 2 0 X 1min 35 3 0 X 1min
12000 13 2 0 X 1min 31 1 0 X 1min

Table VI.16: Number of SWLs to solve the ERP with option C (see Section III.3.5). Study
of the influence of the ERP parameters λP and nc. The symbol X means that the acceptable
underestimation is satisfied. Results obtained with combinations of original CEL-based
PSWLs.

The efficiency of the envelope reconstruction problem based on combinations of PSWLs
derived from original or adjusted ESWLs obtained with the LRC, CST or CEL methods is
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summarized in Table VI.17. It is observed that the efficiency of the PSWLs for the envelope
reconstruction problem is worse, considering adjusted ESWLs rather than the original ones
for the SVD operation. Finally, the PSWL bases obtained with ESWLs derived from the
conditional expected load and load-response correlation methods perform better than the
PSWL basis obtained with ESWLs derived from the conditional sampling technique.

No underestimation and ε̂′ = 10%
PSWL basis ns nq nr(ns) ε̌(ns) CPU
original LRC-based 30 2 0 X 1min
adjusted LRC-based 49 4 0 X 1min
original CST-based 60 3 0 X 2min
adjusted CST-based 64 4 0 X 2min
original CEL-based 30 2 0 X 1min
adjusted CEL-based 52 3 0 X 1min

Table VI.17: Number of SWLs to solve the ERP with option C (see Section III.3.5). ERP
parameters: ε̂ = 4.76%, ε̌t = −4.76%, γ = 1, λP = 0.90, nc = 6000. The symbol X means
that the acceptable underestimation is satisfied.
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VI.5.6 Summary

The non-Gaussianity of the aerodynamic pressures and the structural responses is accounted
for in this third example. The problem of the reconstruction of an asymmetric envelope has
been therefore investigated.

◦ First, three formulations of ESWLs have been studied. Inspired by the LRC method
in which Gaussian conditional probability densities as well as their mean values are
required, conditional expected SWLs obtained from a bicubic model have been derived,
see Sections IV.7 and IV.8. Two other methods have been considered for comparison:
the conditional sampling pressure technique and the original LRC method, see Sections
IV.3 and IV.4, respectively.

◦ Second, in order to compare those methods, the two required properties of an ESWL
have been investigated: the envelope value and non-overestimation conditions, see
Section IV.2. Indeed, the studied ESWL formulations may not naturally satisfy these
two conditions and a procedure in Section VI.5.1 is proposed to scale and adjust original
ESWLs whenever necessary.

◦ Third, it has been illustrated that the LRC method may encounter some difficulties
to satisfy the non-overestimation condition, i.e., large local coefficients have to be
applied to the original ESWLs. Actually, the conditional sampling technique and the
proposed CEL method with the bicubic model are better suited: they satisfy the non-
overestimation condition without excessively distorting original ESWLs, i.e., adjusted
ESWLs remain close to the original ones. Computing ESWLs and using them as such,
we thus recommend the use of the CEL method or the sampling technique instead of
the LRC method in case of non-Gaussian structural responses.

◦ Fourth, concerning the envelope reconstruction efficiency, no significant differences on
the overall reconstruction are observed between PSWLs obtained with the three inves-
tigated methods formulating ESWLs. However, the PSWL basis obtained with ESWLs
derived from the conditional expected load and load-response correlation methods per-
form better to ensure the acceptable underestimation condition for all responses.

◦ Fifth, the automatic procedure to handle the envelope reconstruction problem with
PSWL basis has proven to be efficient. The three options to establish SWLs ensuring
no underestimation of the envelope have been investigated and the option C performs
better.
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VI.6 Summary

The methodology to solve the envelope reconstruction problem described in Chapter III has
been applied in the present Chapter to three different structures: a four-span bridge, a real-
life stadium roof and a low-rise building. The methodology has demonstrated to be efficient,
particularly with principal static wind loads in comparison with equivalent static wind loads,
CPT loading modes or modal inertial loads. The intrinsic controllability of two pertinent
parameters which are

◦ the acceptable overestimation ε̂ and

◦ the number nq of basic static wind loads to be combined

makes the methodology flexible to specific envelope reconstruction requirements, chosen as

◦ the acceptable overall reconstruction indicator Rt and

◦ the acceptable underestimation ε̌t.

For instance, the choice of the acceptable overestimation and the largest relative error may
depend on the structural design phase, at the early stages of pre-design or at the final stages of
structural verification. In the former case, largest values for ε̂ and ε̌t may be considered than
in the latter phase of structural verification. This choice may also depend on the magnitude
of the structural responses under the mean wind loading and permanent loads and if the
wind load scenario prevails or not. From this perspective, the flexibility of the methodology
to user-defined over- and underestimation of the actual envelope is an appreciable advantage.

The proposed methodology is general. The procedure is the same no matter the kind of
structure, its load-bearing system, its dynamical structural behavior and the level of non-
Gaussianity of the responses involved in the problem.

Finally, the automatic procedure to handle the envelope reconstruction problem with
PSWL bases has proven to be efficient in case of very small tolerance on the acceptable
relative errors. The three options to establish SWLs ensuring no underestimation of the
envelope have been investigated and the option C performs better.
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VII.1 Introduction

Context of the study

Static wind loads are being used for the design of civil structures subjected to the buffeting
action of the wind. The corresponding static analyses have to provide structural responses
similar to the extreme values that would be provided by a buffeting analysis. Once static
wind loads are known, they are readily applied to the structure and structural engineers can
effectively focus on the structural design. If the structure under investigation is beyond the
scope of actual standards, advanced methods are required to produce relevant static wind
loads for the design. This brought us to formulate the following two research questions.

1. How to establish ESWLs in a theoretical and general framework?

Equivalent static wind loads (ESWLs) are usually considered for the purpose of the design.
The concept has been reviewed and two main gaps have been highlighted. First, there is
no consensual view of the theoretical definition of an ESWL. This is essential to extend the
concept in a non-Gaussian context. Second, each formulation is given in the specific basis
—nodal, modal or hybrid— in which the structural analysis is performed instead of being
general no matter the basis used.

2. Which methodology to produce reliable static wind loads for the design?

Other kinds of static wind loads than the equivalent ones have been studied. The challenge
consists in deriving a set of static wind loads that could efficiently reconstruct the extreme
values of structural responses. The term “efficient” may cover a large range of features that
would be required for these static wind loads. An optimum reconstruction for all responses
of interest with a minimum number of loadings is considered as the main objective. This
issue constitutes the core of the studies undertaken in this dissertation.

Outline of the present Chapter

Section VII.2 discusses the three main theoretical implications of this thesis and how these
developments offer a new insight into the concept of equivalent static wind loads. Section
VII.3 focuses on the formulation of the envelope reconstruction problem and the notion of
principal static wind loads as a potential tool for design in everyday practice. Section VII.4
reports the limitations of the present study and Section VII.5 gives recommendations for
future researches. Finally, Section VII.6 points out how the present work has contributed to
the body of knowledge in the field of wind engineering.

VII.2 Theoretical implications

Conditional Expected Static Wind Load

Since 1970’s, several formulations of equivalent static wind loads have been established de-
pending on the structural behavior: quasi-static, hybrid or resonant and for some of them
assuming Gaussian random processes. Driven by the necessity to derive such ESWLs in a
non-Gaussian context, we have formally introduced the concept of conditional expected static
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wind load. In our opinion, ESWL should be based on the premise that it collects the average
wind loads conditioned upon recovery of the considered response. This meaningful definition
of an ESWL impinges on the understanding of existing methods since they formulate ESWLs
which are actually conditional expected SWLs in a Gaussian framework. Moreover, it is a
solid concept for the developments of further methods in a non-Gaussian context.

Bicubic model for the joint and conditional PDFs

A bicubic model for the joint and conditional PDFs of two non-Gaussian variables is de-
rived based on the Hermite moment model (Winterstein, 1988). This bicubic model is the
cornerstone to establish conditional expected SWLs for non-Gaussian processes. We be-
lieve the bicubic model is directly accessible for practitioners since the Hermite moment
model is already well-known in the wind engineering community for different applications,
e.g., the model for “non-Gaussian” peak factor developed by Kareem and Zhao (1994). It
is also important to stress that the bicubic model is utterly general —within its domain of
applicability— in the sense that it could be applied to any set of two random processes: for
instance, two structural responses or two loads.

VII.3 Practical implications

Conditional Expected Load method

Thanks to the conditional expected load method, conditional expected static wind loads are
formulated for (i) all kinds of linear structural behaviors (background, hybrid and resonant),
(ii) irrespective of the basis used for the analysis (nodal, hybrid and modal), (iii) able to han-
dle mixed background/resonant contributions and (iv) relevant for non-Gaussian processes.
Under specific circumstances, this novel method degenerates into existing pioneering theories
such as the load-response correlation method (Kasperski, 1992) and what we called hybrid-
based ESWLs (Chen and Kareem, 2001). Moreover, its aptitude to naturally handle mixed
background/resonant contributions is a pertinent feature since a recent study proposed an
ESWL formulation to this end (Ke et al., 2012).

Robust methodology for the envelope reconstruction problem

The wind effects on structures by means of static wind loads may be understood as an enve-
lope reconstruction problem (ERP). The proposed iterative procedure, is a general concept
(i) no matter the structure, (ii) its load-bearing system and (iii) dynamical behavior (quasi-
static, hybrid or resonant). It is relevant for (iv) Gaussian and non-Gaussian structural
responses, as well. Moreover, we have highlighted that a more elaborated approach is based
on combinations of static wind loads. The combination coefficients are determined with a
robust constrained nonlinear optimization algorithm.

It should be emphasized that our iterative procedure departs from the prevailing ap-
proaches where one or two static wind loads are computed. However, we firmly believe it is
an essential requirement of a general approach and makes the proposed methodology relevant
for the envelope reconstruction problem.
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Principal Static Wind Loads for design

One key-finding from our study is the meaningful concept of Principal Static Wind Load
(PSWL). They are determined by singular value decomposition of a large set of Equivalent
Static Wind Loads and therefore can be seen as a manner to sort out the most important
load patterns. They are the directors of an optimum basis of loadings to represent large
sets of ESWLs. The more structural responses are correlated, the more ESWLs have similar
distributions and the smaller number of PSWLs has to be retained. Also, they are still
dependent upon the set of structural responses to be reconstructed, though they are not
associated with specific structural responses which is the main limitation of ESWLs. Finally,
the PSWLs are relevant for structures with quasi-static, hybrid or resonant behaviors on the
condition that the appropriate ESWL formulation has been selected to compute all ESWLs
on which the singular value decomposition is applied.

The key-idea has been to use PSWLs for the envelope reconstruction problem instead
of having recourse to ESWLs, covariance proper transformation loading modes or modal
inertial loads, as usual. The three examples used for illustrations have shown that the
envelope reconstruction accuracy is considerably improved with PSWLs and by combinations
thereof. They are, indeed, better suited than equivalent static wind loads, covariance proper
transformation loading modes or modal inertial loads.

In the near future, we are convinced that the concept of PSWL is a pertinent candidate to
those who want to handle the envelope reconstruction problem of large and complex-shaped
structures.

VII.4 Limitations of the study

Only synoptic winds are considered in this work. The wind loads resulting from these kinds
of winds are assumed as stationary on a restricted period, representative for the wind effects
on structures. Moreover, this work focuses on the analysis of structures for which a linear
behavior under wind actions can be reasonably assumed. Also, we only consider in this work
structural responses that are obtained by linear combinations of the nodal displacements.

VII.5 Recommendations for further research

Conditional expected static wind load

In a Gaussian context, the general formulation of the conditional expected SWL degenerates
into a closed-form expression. The LRC and hybrid methods already formulated this kind of
loading. They are being commonly used so far by the practitioners for the design. Moreover,
they are also used for structural responses exhibiting non-Gaussianities. This work has shown
that using the “Gaussian” formulation with non-Gaussian structural responses can lead to
important overestimations of the envelope values of other responses in the structure. This
may result in an uneconomical design. This observation inspires the two following research
tracks.

Indeed, this work has investigated a bicubic model to formulate such SWL in a non-
Gaussian context. Its limitations —only one cross-moment is considered in the parametric
joint PDF and the monotone limitation— restrict, however, its accuracy and applicability.
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Further research is therefore required to provide reliable estimations of the “non-Gaussian”
conditional expected static wind load by means of other parametric or non-parametric ap-
proaches. It may be anticipated that the more moments and cross-moments are considered,
the more parametric models would be complex or would even fail to satisfy all the imposed
statistical moments. In this sense, we recommend the non-parametric estimations of joint
and conditional PDFs, for instance, through the maximum entropy method or the recourse
to kernel density estimation.

Second, in both cases, the number of statistical moments to be considered should be
studied as a first step. Indeed, the shape of a PDF is not unique even if, for instance,
the first four moments are imposed. This statement also holds for the joint and marginal
PDFs. The influence of such variation on the conditional expected value should therefore be
studied first. In other words, the question is how many moments and cross-moments have
to be considered for a robust estimation of the “non-Gaussian” conditional expected value.
From this perspective, the confidence intervals from realizations of the statistical moments
must also be estimated. The larger the order of the statistical moment, the larger number of
realizations is required. Indeed, it does not make sense to account for a statistical moment
if its confidence interval is too large.

In conclusion, there is an important need for further guidelines to derive with confidence
“non-Gaussian” conditional expected static wind load.

Envelope reconstruction problem

The structural wind design of buildings is usually done for several wind directions and we
could apply the methodology developed in this work for each wind direction. The number
of envelope reconstruction problems is thus equal to the number of studied wind directions.
However, a design office usually seeks to derive representative static wind loads covering
all wind directions. This new problem remains, from our point of view, an open question.
For example, the covariance proper transformation loading modes are not well-suited since
they are specific for each wind direction. Moreover, the envelope reconstruction has to
be reformulated. We recommend that the envelope reconstruction problem focuses on the
reconstruction of the total envelope covering all wind directions since the mean component
of responses is no longer associated with a unique mean loading. Accordingly, the concept
of PSWLs has to be adapted. In such cases, they should be obtained with a singular value
decomposition of the total equivalent static wind loads.

VII.6 Conclusion

The main objective of this research work is to propose novel concepts of static wind load for
the purpose of design. Due to the great significance of the subject matter under discussion,
several pioneering methods are already available and have been extensively reviewed. Several
potential improvements have been identified and two research questions were formulated in
the introduction of this Chapter. The present study has offered novel responses to them
summarized hereinafter.
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1. How to establish ESWLs in a theoretical and general framework?

By reference to the definition of a conditional expected static wind load and the Conditional
Expected Load method formulating them with elastic forces.

2. Which methodology to produce reliable static wind loads for the design?

By adopting the Envelope Reconstruction Problem formulation and by recourse to the
Principal Static Wind Loads and combinations thereof.

The illustrations proved how the aforementioned outcomes offered new profound methods
with direct theoretical and practical implications.
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Appendix A

Alternative estimation of
representative extreme values

In this Appendix, we would like to show that the automatic procedure also performs well in
case of another reference period and alternative estimation method of representative extreme
values.

A.1 Introduction

Firstly, this appendix assesses the envelope reconstruction problem efficiency when the peak
factors (obtained using the Kareem-Zhao model) are associated with a reference period of
1 hour instead of 10 min. Secondly, the methodology communicated by Dr. Kasperski, see
Section A.2, is used to compute the peak factors and the efficiency of the envelope recon-
struction problem is investigated, as well. Only the automatic procedure, see Section V.4, is
illustrated since the conclusion of the illustration Chapter has emphasized its advantages in
case of small tolerance on relative errors. The option C is applied to obtain SWLs ensuring
no underestimation for two values of the final overestimation ε̂′ = 25% and ε̂′ = 10%, see
Section III.2 and Table III.2.

Section A.2 reproduces the methodology communicated by Dr. Kasperski to estimate
peak factors for a reference period of 1 hour. Sections A.3 and A.4 illustrate the envelope
reconstruction problem for the Lille’s stadium example, see Sections VI.3-VI.4, and for the
low-rise building example, see Section VI.5. Section A.5 summarizes the main findings.

A.2 Methodology communicated by Dr. Kasperski

1. Let assume we have n observation windows of 10 minutes. We denote by ři and r̂i, the
largest minimum value and the largest maximum value, respectively, observed on the
i-th observation window.

2. cmean(10min)= mean value of extremes (min− or max+) for reference period 10 min-
utes

cmean(10min)− =
1

n

n∑
i=1

ři, cmean(10min)+ =
1

n

n∑
i=1

r̂i, (A.2.1)
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3. csdev= standard deviation of extremes (min or max) (independent of reference period)

csdev− =

√√√√ 1

n− 1

n∑
i=1

(ři − cmean−)2, csdev+ =

√√√√ 1

n− 1

n∑
i=1

(r̂i − cmean+)2,

(A.2.2)

4. cmean(1 hour)= mean value of extremes (min− or max+) for reference period 1 hour

cmean(1hour)− = cmean(10min)− − 1.3970× csdev−, (A.2.3)

cmean(1hour)+ = cmean(10min)+ + 1.3970× csdev+, (A.2.4)

5. cov(c)

cov(c)− = csdev−/
∣∣cmean(1hour)−

∣∣ , cov(c)+ = csdev+/cmean(1hour)+, (A.2.5)

6. cdesred(1hour) based on the graph

cdesred(1hour)− = f(cov(c)−), cdesred(1hour)+ = f(cov(c)+), (A.2.6)

7. cdes=design value for reference period 1 hour

cdes(1hour)− = cmean(1hour)− − cdesred(1hour)−csdev−, (A.2.7)

cdes(1hour)+ = cmean(1hour)+ + cdesred(1hour)+csdev+, (A.2.8)

Figure A.1: cdesred(1hour) = f(cov(c)).

8. peak factors for reference period 1 hour

g(min) =
cdes(1hour)−

σr
, (A.2.9)

g(max) =
cdes(1hour)+

σr
. (A.2.10)
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A.3 Lille’s stadium example

A.3.1 Establishment of the envelope (Reference period 1 hour)

For a reference period of one hour, the peak factors computed with Kareem-Zhao and Kasper-
ski formulations are illustrated with the six sets of structural elements identified in red in
Figures A.3, A.4, A.5, A.6, A.7 and A.8. The skewness coefficients, excess coefficients, stan-
dard deviation and envelope of the considered internal force for these structural elements are
also depicted. Figure A.2 shows the peaks factors obtained with the Kareem-Zhao model ver-
sus the peak factors obtained with Kasperski’s methodology. In the assessment of different
methods for extreme value analysis, Ding and Chen (2014) have shown that for mildly soft-
ening non-Gaussian processes (the example in the article is a random process with γ3,r = 0.7,
γe,r = 4.3), the cubic transformation method, on which is based the Kareem-Zhao model for
peak factors, works very fine. They also shown that for strongly softening non-Gaussian
processes (the example in the article is a random process with γ3,r = 2.22, γe,r = 14.71!),
the cubic transformation method produces relative errors of about 10% for the estimation of
the mean largest maximum. For the Lille’s stadium, the majority of the random processes
can be classified as slightly to mildly non-Gaussian, see Figure VI.91 and a hundred (out
of 7994) as strongly ones. Also, these relative differences can be partially attributed to the
small number of 10-min observation windows, here 10. Indeed, the current trends in research
concerning Kasperski’s methodology recommend several hundred and ideally more than 1000
observation windows of 10 minutes to obtain good estimates, in the sense of confidence inter-
vals, of the peak factors. These two remarks help to appreciate the relative differences in the
range [-20%, 20%] between the non-Gaussian peak factors computed with the Kareem-Zhao
model and Kasperski’s methodology.
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Figure A.2: Scatter plot of peak factors obtained with the Kareem-Zhao model versus the
peak factors obtained with Kasperski’s formulation.
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Figure A.3: Establishment of the envelope for 15 beam elements considered for the illustra-
tion (in red) and axial force envelope for these elements.
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Figure A.4: Establishement of the envelope for 14 beam elements considered for the illustra-
tion (in red) and axial force envelope for these elements.
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Figure A.5: Establishement of the envelope for 17 beam elements considered for the illustra-
tion (in red) and bending moment envelope for these elements.
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Figure A.6: Establishement of the envelope for 17 beam elements considered for the illustra-
tion (in red) and bending moment envelope for these elements.
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Figure A.7: Establishement of the envelope for 21 beam elements considered for the illustra-
tion (in red) and axial force envelope for these elements.
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Figure A.8: Establishement of the envelope for 8 bars considered for the illustration (in red)
and axial force envelope for these elements.
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A.3.2 Automatic procedure (Kareem-Zhao model for peak fac-
tors)

The ESWLs are obtained from the hybrid method proposed by (Chen and Kareem, 2001)
and reviewed in Section IV.6. Figure A.9 shows the histograms of overestimation relative
errors that would be obtained if all original hybrid-based ESWLs were used for the ERP.
There are approximately 9778 envelope values out of 15988 that would be overestimated in
the range [0,30%]. This range of overestimation is slightly larger than the one obtained when
considering a 10-min observation period, see Section VI.4.
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Figure A.9: Histograms of overestimation relative errors that are obtained with the original
hybrid-based ESWLs. Overestimation relative errors associated with (a) upper (positive)
and (b) lower (negative) envelope values. Results obtained in a non-Gaussian framework
(Kareem-Zhao model for peak factors, observation period 1 hour).

Table A.1 presents the results of the ERP and Figure A.10 shows the evolution of the
number of responses as a function of the number of load cases for the final overestimation
ε̂′ = 10%. The same ratio λP = 0.995 and number of initial set of combinations nc = 6000
as in Section VI.4 are used.

By comparison with the results associated with a reference period of 10min, see Table
VI.13, the level of complexity of the ERP is not significantly increased by taking into account
another observation period or, another envelope. Once again, the automatic procedure proves
to be efficient even if the original ESWLs do not satisfy at first, the non-overestimation
condition. It is just more difficult to achieve very small tolerances on the reconstruction.
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No underestimation and ε̂′ = 25% No underestimation and ε̂′ = 10%
ns nq np nr(ns) ε̌(ns) CPU ns nq np nr(ns) ε̌(ns) CPU
151 7 [39,...,3] 0 X 9min 399 16 [39,...,6] 0 X 18min

Table A.1: Number of SWLs to solve the ERP with option C (see Section III.3.5). ERP
parameters: γ = 1, λP = 0.995, nc = 6000. The symbol X means that the acceptable
underestimation is satisfied. Results obtained in a non-Gaussian framework (Kareem-Zhao
model for peak factors, observation period 1 hour).
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Figure A.10: Evolution of the number of responses nr(k), see 127 with ε
(m)
(k) < ε̌t as a function

of the number of load cases. ERP parameters: ε̂ = 4.76%, ε̌t = −4.76%, γ = 1, λP = 0.995,
nc = 6000. Vertical red lines correspond to an updating of the PSWL basis. Results obtained
in a non-Gaussian framework (Kareem-Zhao model for peak factors, observation period 1
hour).

A.3.3 Automatic procedure (Kasperski’s methodology for peak
factors)

The ESWLs are obtained with the hybrid method proposed by (Chen and Kareem, 2001) and
reviewed in Section IV.6. Figure A.11 shows the histograms of overestimation relative errors
that would be obtained if all original hybrid-based ESWLs were used for the ERP. There
is approximately 11000 envelope values out of 15988 that would be overestimated in the
range [0,60%]. This range of overestimation has doubled in comparison to the range [0,30%]
obtained with Kareem-Zhao model for peak factors, see the previous Section. The envelope
reconstruction problem is expected to be more complex with such large overestimations
associated with the original hybrid-based ESWLs. The origin of these overestimations is
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twofold. First, all ESWLs do not necessary fulfill the non-overestimation condition (IV.2.4)
since the hybrid method is based on a Gaussian assumption. Secondly, the small number of
observation windows1, 10, increases considerably the confidence intervals on the peak factors
computed with Kasperski’s methodology. The larger the errors on the estimation of the
mean largest maximum and mean smallest minimum, the larger the expected overestimations
associated with original ESWLs.
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Figure A.11: Histograms of overestimation relative errors that are obtained with the original
hybrid-based ESWLs. Overestimation relative errors associated with (a) upper (positive)
and (b) lower (negative) envelope values. Results obtained in a non-Gaussian framework
(Kasperski’s methodology for peak factors, observation period 1 hour).

Table A.2 presents the results with option C and Figure A.12 shows the evolution of the
number of responses as a function of the number of load cases for the final overestimation
ε̂′ = 10%. For the final overestimation ε̂′ = 25%, the acceptable underestimation ε̌t = −11%
is not satisfied even when increasing the ratio λP from 0.995 to 0.999 and the number nc
from 6000 to 50000. The last PSWL basis is not able to solve entirely the ERP since the
SVD operation is made on the original hybrid-based ESWLs which strongly violate the
non-overestimation condition. On the other hand, the number of responses that do not
satisfy the acceptable underestimation is very small and equal to one (out of 15988) for the
parameters λP = 0.999 and nc = 50000. In this last case, the sole PSWL corresponds to
the ESWL and there is simply no optimization to deal with the overestimations larger than
11% associated with this last ESWL. Additionally, it is emphasized that the largest relative
indicator remains close to the target acceptable underestimation, e.g., -16.5% instead of -11%
for the parameters λP = 0.999 and nc = 50000. For the final overestimation ε̂′ = 10%, the
number of responses that do not satisfy the acceptable underestimation is greater, 134 out of
15988 for the parameters λP = 0.995 and nc = 12000. For this specific example and envelope,
adjusted ESWLs can be derived for all responses before the first SVD operation to obtain

1The current trends in research concerning the approach presented in Appendix A.2 recommends more
than 1000 observation windows of 10 minutes to obtain good estimates, in the sense of confidence intervals,
of the peak factors.
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PSWLs or after the optimization for the remaining responses with too large underestimations.

No underestimation and ε̂′ = 25%
λP nc ns nq np nr(ns) ε̌(ns) CPU

0.995
6000 145 7 [38,...,5] 24 -26% 12min
12000 172 10 [38,...,5] 5 -22% 21min
50000 158 7 [38,...,5] 9 -17% 55min

0.999
25000 144 11 [68,...,4] 4 -15% 26min
50000 159 9 [68,...,1] 1 -16.5% 47min

No underestimation and ε̂′ = 10%
λP nc ns nq np nr(ns) ε̌(ns) CPU

0.995 6000 386 28 [38,...,27] 208 -32% 22min
0.995 12000 465 45 [38,...,22] 134 -25% 32min

Table A.2: Number of SWLs to solve the ERP with option C (see Section III.3.5). Results
obtained in a non-Gaussian framework (Kasperski’s methodology for peak factors, observa-
tion period of 1 hour).
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Figure A.12: Evolution of the number of responses nr(k), see page 127 with ε
(m)
(k) < ε̌t as a

function of the number of load cases. ERP parameters: ε̂ = 4.76%, ε̌t = −4.76%, γ = 1,
λP = 0.995, nc = 6000. Vertical red lines correspond to an updating of the PSWL basis.
Results obtained in a non-Gaussian framework (Kasperski’s methodology for peak factors,
observation period of 1 hour).
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A.4 Low-rise gable roof building example

A.4.1 Establishment of the envelope (reference period 1 hour)

The envelope values are firstly computed with Kasperski’s methodology, as described in
Section A.2. Figure A.13 shows the cov(c) (A.2.5) and cdesred (A.2.6) parameters as well
as the peak factors (A.2.9)-(A.2.10) and the envelope values (II.4.15).
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Figure A.13: Parameters: cov(c) (A.2.5) and cdesred (A.2.6), the peak factors (A.2.9)-
(A.2.10) and the envelope values (II.4.15) for both considered frames. The results in orange
and red are respectively associated with the positive (upper) and negative (lower) envelope
values.

Figure A.14 compares the peak factors and envelope values obtained with the afore-
mentioned methodology and with the Kareem-Zhao model (II.3.31)-(II.3.32). The two ap-
proaches showed very good agreement.
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Figure A.14: Comparison of peak factors and envelope values obtained with Kasperski’s
methodology in orange (Section A.2) and Kareem-Zhao model in red (Section II.3.2).
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Figure A.15 shows the peaks factors obtained with the Kareem-Zhao model versus the
peak factors obtained with Kasperski’s methodology. The relative differences are globally
in the range [-20% 20%] as for the Lille’s stadium and the same comments formulated in
Section A.3.1 applied here.
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Figure A.15: Scatter plot of peaks factors obtained with the Kareem-Zhao model versus the
peak factors obtained with Kasperski’s formulation.

A.4.2 Automatic procedure (Kareem-Zhao model for peak fac-
tors)

The influence of the ERP parameters λP and nc on the number of SWLs ns is reported in
Table A.3. The results are obtained with combinations of original CEL-based PSWLs. The
ERP parameters λP=0.90 and nc = 6000 chosen in Section VI.5.5 are satisfactory and kept
in the sequel.

No underestimation and ε̂′ = 25% No underestimation and ε̂′ = 10%
λP nc ns nq nr(ns) ε̌(ns) CPU ns nq nr(ns) ε̌(ns) CPU

0.85
6000 14 1 0 X 1min 32 2 0 X 1min
12000 14 1 0 X 1min 32 2 0 X 1min

0.90
6000 14 2 0 X 1min 16 1 0 X 1min
12000 12 1 0 X 1min 14 2 0 X 1min

0.95
6000 16 2 0 X 1min 24 2 0 X 1min
12000 16 1 0 X 1min 22 1 0 X 1min

Table A.3: Number of SWLs to solve the ERP with option C (see Section III.3.5). Study of
the influence of the ERP parameters λP and nc. The symbol X means that the acceptable
underestimation is satisfied. Results obtained with combinations of original CEL-based
PSWLs (Kareem-Zhao model for the peak factors, observation period of 1 hour).
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The efficiency of the envelope reconstruction problem based on combinations of PSWLs
derived from original or adjusted ESWLs obtained with the LRC, CST or CEL methods
is reported in Table A.4. It is observed that the efficiency of the PSWLs for the envelope
reconstruction problem is slightly worse, considering adjusted ESWLs rather than the original
ones for the SVD operation. Finally, the PSWL bases obtained with ESWLs derived from
the conditional expected load and load-response correlation methods perform better than
the PSWL basis obtained with ESWLs derived from the conditional sampling technique.

No underestimation and ε̂′ = 10%
PSWL basis ns nq nr(ns) ε̌(ns) CPU
original LRC-based 22 1 0 X 1min
adjusted LRC-based 22 1 0 X 1min
original CST-based 56 3 0 X 2min
adjusted CST-based 72 2 0 X 2min
original CEL-based 16 1 0 X 1min
adjusted CEL-based 24 3 0 X 1min

Table A.4: Number of SWLs to solve the ERP with option C (see Section III.3.5). ERP
parameters: ε̂ = 4.76%, ε̌t = −4.76%, γ = 1, λP = 0.90, nc = 6000. The symbol X means
that the acceptable underestimation is satisfied. (Kareem-Zhao model for peak factors,
observation period of 1 hour)

Figure A.16 shows the evolution of the number of responses as a function of the number of
load cases for the final overestimation ε̂′ = 10%. The results are obtained in a
non-Gaussian framework with PSWLs based on original CEL-based ESWLs.
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Figure A.16: Evolution of the number of responses nr(k), see page 127 with ε
(m)
(k) < ε̌t as a

function of the number of load cases. ERP parameters: ε̂ = 4.76%, ε̌t = −4.76%, γ = 1,
λP = 0.90, nc = 6000. Vertical red lines correspond to an updating of the PSWL basis.
Results obtained in a non-Gaussian framework with PSWLs based on original CEL-based
ESWLs (Kareem-Zhao model for peak factors, observation period of 1 hour).

A.4.3 Automatic procedure (Kasperski’s methodology for peak
factors)

The influence of the ERP parameters λP and nc on the number of SWLs ns and the conver-
gence on the ERP is reported in Table A.5. The ERP parameters λP=0.90 and nc = 12000
are chosen for the subsequent computations.

No underestimation and ε̂′ = 25% No underestimation and ε̂′ = 10%
λP nc ns nq nr(ns) ε̌(ns) CPU ns nq nr(ns) ε̌(ns) CPU

0.85
6000 20 2 0 X 1min 53 5 0 X 1min
12000 22 4 1 -13% 1min 50 4 0 X 1min

0.90
6000 18 2 0 X 1min 54 7 2 -8% 1min
12000 16 2 0 X 1min 46 2 0 X 1min

0.95
6000 20 2 0 X 1min 37 4 1 -5.9% 1min
12000 16 3 1 -12.9% 1min 42 3 1 -6.9% 1min

Table A.5: Number of SWLs to solve the ERP with option C (see Section III.3.5). Study of
the influence of the ERP parameters λP and nc. The symbol X means that the acceptable
underestimation is satisfied. Results obtained with combinations of original CEL-based
PSWLs (Kasperski’s methodology for peak factors, observation period of 1 hour).
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The efficiency of the envelope reconstruction problem based on combinations of PSWLs
derived from original or adjusted ESWLs obtained with the LRC, CST or CEL methods
is studied in Table A.6. It is observed that the efficiency of the PSWLs for the envelope
reconstruction problem is better, considering adjusted ESWLs rather than the original ones
for the SVD operation. This statement is all the more true when the PSWLs based on the
original ESWLs fail to solve the ERP, i.e., fail to satisfy the acceptable underestimation
(LRC-, CST-based). In such cases, we thence recommend the use of the adjusted ESWLs
for computing PSWLs.

Finally, if only original ESWLs had to be considered, the PSWL basis obtained with
ESWLs derived from the conditional expected load performs better than original ESWLs
derived from the load-response correlation method or the conditional sampling technique.

No underestimation and ε̂′ = 10%
PSWL basis ns nq nr(ns) ε̌(ns) CPU
original LRC-based 56 8 4 -9.5% 1min
adjusted LRC-based 38 3 0 X 1min
original CST-based 49 3 2 -8.9% 2min
adjusted CST-based 55 3 0 X 2min
original CEL-based 46 2 0 X 1min
adjusted CEL-based 46 4 0 X 1min

Table A.6: Number of SWLs to solve the ERP with option C (see Section III.3.5). ERP
parameters: λP = 0.90, nc = 12000. (Kasperski’s methodology for peak factors, observation
period of 1 hour)

Figure A.17 shows the evolution of the number of responses as a function of the number of
load cases for the final overestimation ε̂′ = 10%. The results are obtained in a
non-Gaussian framework with PSWLs based on original CEL-based ESWLs.
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Figure A.17: Evolution of the number of responses nr(k), see page 127 with ε
(m)
(k) < ε̌t as a

function of the number of load cases. ERP parameters: ε̂ = 4.76%, ε̌t = −4.76%, γ = 1,
λP = 0.90, nc = 12000. Vertical red lines correspond to an updating of the PSWL basis.
Results obtained in a non-Gaussian framework with PSWLs based on original CEL-based
ESWLs (Kasperski’s methodology for peak factors, observation period of 1 hour).
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A.5 Conclusion

The principal findings are:

◦ the automatic procedure performs well in case of another reference period and alter-
native estimation method of representative extreme values;

◦ the reference period has a very small influence on the envelope reconstruction problem
efficiency;

◦ for small tolerance on the relative errors, if the PSWLs based on original ESWLs
do not solve the ERP, it means that the original ESWLs strongly violate the non-
overestimation condition. This emphasizes the importance to accurately estimate the
mean of the extremes and/or to derive CEL-based ESWLs.

◦ If the automatic procedure does not succeed to satisfy the acceptable under- and
over- estimations, adjusted ESWLs should be used for the SVD operation establishing
PSWLs.
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Master’s thesis: ”Étude du comportement d’une toiture de grandes dimensions
soumise à un vent turbulent. Application : le Grand Stade de Lille Métropole”
Great distinction

- BSc in Applied Sciences: Civil Engineering, Ulg
Sept 2005 - June 2008
Distinction

- Secondary education, Athénée Royal Air Pur, Seraing
Sept 1999 - June 2005

Professional experience

Teaching assistant, Argenco Department - Structural and Stochastic Dynamics sector.
Sept 2010 - Sept 2016

Publications

Papers published or accepted for publication in ISI journals
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4. Canor, T., Blaise, N., Denoël, V. (2012). Efficient uncoupled stochastic analysis with
non-proportional damping. Journal of Sound and Vibration, 331(24), 5283-5291.

Chapter of a book
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